

Transition guide

This resource is to help students make the transition from GCSE to AS or A-level Chemistry.

Contents

You're studying AS or A-level Chemistry, congratulations!	3
Why study A-level Chemistry?	3
Possible degree options	3
Which career appeals to you?	4
Specification at a glance	5
Should you study an AS or A-level?	6
The assessment for the AS consists of two exams	7
The assessment for the A-level consists of three exams	8
Places to go for help	9
Useful information and activities	11
Greek letters	11
SI units	13
Important vocabulary for practical work	16
Precise language	17
The periodic table	17
Relative atomic mass	20
Relative formula mass	21
Common ions	22
Diatomic molecules	25
Common compounds	25
Balancing equations	26
Moles	28
Empirical formula	29

The periodic table

You're studying AS or A-level Chemistry, congratulations!

Studying chemistry after your GCSEs really develops your practical and mathematical skills. If you enjoy experimenting in the lab, you'll love it.

At first, you may find the jump in demand from GCSE a little daunting, but if you follow the tips and advice in this guide, you'll soon adapt.

We recommend you keep this somewhere safe, as you may like to refer to the information inside throughout your studies.

Why study A-level Chemistry?

Chemistry students get to investigate a huge range of ideas: the big question you'll ask yourself is 'what is the world made of?' If you choose it as career, you have the potential to help solve all sorts of problems. You could work on a cure for cancer, or you might develop a new food: the possibilities are endless.

Even if you don't decide to work in chemistry, studying it still develops useful and transferable skills for other careers. You'll develop research, problem solving and analytical skills, alongside teamwork and communication. Universities and businesses regard all of these very highly.

Possible degree options

According to <u>bestcourse4me.com</u>, the top five degree courses taken by students who have A-level Chemistry are:

- Chemistry
- Biology
- Pre-clinical medicine
- Mathematics
- Pharmacology.

For more details, go to the <u>bestcourse4me.com</u> website, or <u>UCAS</u>.

Which career appeals to you?

Studying Chemistry at A-level or degree opens up plenty of career opportunities, such as:

- analytical chemist
- chemical engineer
- clinical biochemist
- pharmacologist
- doctor
- research scientist (physical sciences)
- toxicologist
- environmental consultant
- higher education lecturer or secondary school teacher
- patent attorney
- science writer.

Specification at a glance

AS and A-level

Physical chemistry

Bonding

Kinetics

Energetics

•

•

.

.

Atomic structure

Amount of substance

Inorganic chemistry

- Periodicity
- Group 2, the alkaline earth metals
- Group 7 (17), the halogens

Organic chemistry

- Introduction to organic chemistry
- Alkanes
- Halogenoalkanes
- Alkenes
- Alcohols
- Organic analysis

Oxidation, reduction and redox equations

principle and K_c

Le Chatelier's

Chemical equilibria,

A-level only topics

Physical chemistry

- Thermodynamics
- Rate equations
- Equilibrium constant K_p for homogeneous systems
- Electrode potentials and electrochemical cells
- Acids and bases

Inorganic chemistry

- Properties of Period 3 elements and oxides
- Transition metals

•

Reactions of ions in aqueous solution

Organic chemistry

- Optical isomerism
 - Aldehydes and ketones
- Carboxylic acids and derivatives
- Aromatic chemistry
- Amines
- Polymers
- Amino acids, proteins and DNA
- Organic synthesis
- NMR spectroscopy
- Chromatography

Should you study AS or A-level?

AS and A-level are separate qualifications.

An AS lasts one year. Your exam results don't count towards an A-level, but they're still valuable and AS UCAS points are accepted by higher education institutions.

Despite being separate to an A-level, AS course content is the same as the first year of A-level. If you want to switch from an AS to an A-level, you can. Your teacher will help you decide whether it's the right move for you.

All exams for the AS take place at the end of the one-year course. Exams for the A-level take place at the end of the two-year course.

The assessment for the AS consists of two exams

Paper 1

What's assessed

- Relevant Physical chemistry topics (sections 3.1.1 to 3.1.4, 3.1.6 and 3.1.7)
- Inorganic chemistry (section 3.2.1 to 3.2.3)
- Relevant practical skills

How it's assessed

- Written exam: 1 hour 30 minutes
- 80 marks
- 50% of the AS

Questions

- 65 marks of short and long answer questions
- 15 marks of multiple choice questions

Paper 2

+

What's assessed

- Relevant Physical chemistry topics (sections 3.1.2 to 3.1.6)
- Organic chemistry (section 3.3.1 to 3.3.6)
- Relevant practical skills

How it's assessed

- Written exam: 1 hour 30 minutes
- 80 marks
- 50% of the AS

Questions

- 65 marks of short and long answer questions
- 15 marks of multiple choice questions

The assessment for the A-level consists of three exams

Paper 1	+ Paper 2	+ Paper 3
 What's assessed Relevant Physical chemistry topics (sections 3.1.1 to 3.1.4, 3.1.6 to 3.1.8 and 3.1.10 to 3.1.12) Inorganic chemistry (section 3.2) Relevant practical skills 	 What's assessed Relevant Physical chemistry topics (sections 3.1.2 to 3.1.6 and 3.1.9) Organic chemistry (section 3.3) Relevant practical skills 	What's assessedAny contentAny practical skills
 How it's assessed Written exam: 2 hours 105 marks 35% of A-level 	 How it's assessed Written exam: 2 hours 105 marks 35% of A-level 	 How it's assessed Written exam: 2 hours 90 marks 30% of A-level
Questions 105 marks of short and long answer questions 	Questions 105 marks of short and long answer questions 	 Questions 40 marks of questions on practical techniques and data analysis 20 marks of questions testing across the specification 30 marks of multiple choice questions

Places to go for help

1. Our website is a great place to start.

Our AS and A-level <u>Chemistry webpages</u> are aimed at teachers, but you may find them useful too. Information includes:

- The <u>specification</u> this explains exactly what you need to learn for your exams.
- Practice exam papers.
- Lists of <u>command words</u> and <u>subject specific vocabulary</u> so you understand the words to use in exams.
- <u>Practical handbooks</u> explain the practical work you need to know.
- Past papers from the <u>old specification</u>. Some questions won't be relevant to the new AS and A-level so please check with your teacher.
- Maths skills support.
- <u>Web resources page</u> with many links to other resources to support study.

2. The Royal Society of Chemistry (RSC)

The RSC do everything from naming new elements and lobbying MPs, to improving funding for research sciences in the UK.

You'll find lots of handy resources on their website.

3. The student room

Join the A-level Chemistry forums and share thoughts and ideas with other students if you're stuck with your homework. Just be very careful not to share any details about your assessments, there are serious consequences if you're caught cheating. Visit <u>thestudentroom.co.uk</u>

4. Textbooks

Our <u>approved textbooks</u> are published by Collins, Hodder and Oxford University Press. Textbooks from other publishers will also be suitable, but you'll need to double check that the content and formula symbols they use match our specification.

5. Revision guides

These are great if you want a quick overview of the course when you're revising for your exams. Remember to use other tools as well, as these aren't detailed enough on their own.

6. YouTube

YouTube has thousands of Chemistry videos. Just be careful to look at who produced the video and why, because some videos distort the facts. Check the author, date and comments – these help indicate whether the clip is reliable. If in doubt, ask your teacher.

7. Magazines

Focus, New Scientist or Philip Allan updates can help you put the chemistry you're learning in context.

Useful information and activities

There are a number of activities throughout this resource. The answers to some of the activities are available on our secure website, e-AQA. Your teacher will be able to provide you with these answers.

Greek letters

Greek letters are used often in science. They can be used as symbols for numbers (such as π = 3.14...), as prefixes for units to make them smaller (eg μ m = 0.000 000 001 m) or as symbols for particular quantities (such as λ which is used for wavelength).

А α alpha B β beta Γ γ gamma δ Δ delta E 3 epsilon Ζ ζ zeta Η η eta Θ θ theta Ι iota l Κ к kappa λ Λ lambda Μ mu μ

The Greek alphabet is shown below.

Ν	ν	nu
[1]	٣Ĵ	ksi
0	0	omicron
Π	π	pi
Р	ρ	rho
Σ	ς or σ	sigma
Т	τ	tau
Y	υ	upsilon
Φ	φ	phi
Х	χ	chi
Ψ	ψ	psi
Ω	ω	omega

Activity 1

A lot of English words are derived from Greek ones, but it's difficult to see as the alphabet is so different.

Many of the Greek letters are pronounced like the start of their name. For example, omega is pronounced "o", sigma is pronounced "s" and lambda is pronounced "l".

See if you can work out what the following Greek words mean by comparing the phonetic spelling with similar English words.

Πυθαγόρας]	Name of a
		mathematician
Ωκεανος		Atlantic, Pacific or
-		Arctic
μόνος		Single
Τηλε		Far or distant
Τρωγλοδύτης]	Cave dweller

SI units

Every measurement must have a size (eg 2.7) and a unit (eg metres or °C). Sometimes there are different units available for the same type of measurement, for example ounces, pounds, kilograms and tonnes are all used as units for mass.

To reduce confusion and to help with conversion between different units, there is a standard system of units called the SI units which are used for most scientific purposes.

These units have all been defined by experiment so that the size of, say, a metre in the UK is the same as a metre in China.

Physical quantity	Usual quantity symbol	Unit	Abbreviation
mass	m	kilogram	kg
length	<i>l</i> or <i>x</i>	metre	m
time	t	second	S
electric current	Ι	ampere	А
temperature	Т	kelvin	К
amount of substance	N	mole	mol
luminous intensity	(not used at A-level)	candela	cd

The seven SI base units are:

All other units can be derived from the SI base units.

For example, area is measured in square metres (written as m^2) and speed is measured in metres per second (written as ms^{-1}).

It is not always appropriate to use a full unit. For example, measuring the width of a hair or the distance from Manchester to London in metres would cause the numbers to be difficult to work with.

Prefixes are used to multiply each of the units. You will be familiar with centi (meaning 1/100), kilo (1000) and milli (1/1000) from centimetres, kilometres and millimetres.

There is a wide range of prefixes. The majority of quantities in scientific contexts will be quoted using the prefixes that are multiples of 1000. For example, a distance of 33 000 m would be quoted as 33 km.

The most common prefixes you will encounter are:

Prefix	Symbol	Multipl	Multiplication factor							
Tera	Т	10 ¹²	1 000 000 000 000	1 000 000 000 000						
Giga	G	10 ⁹	1 000 000 000							
Mega	М	10 ⁶	1 000 000							
kilo	k	10 ³	1000							
deci	d	10 ⁻¹	0.1	1/10						
centi	c	10 ⁻²	0.01	1/100						
milli	m	10 ⁻³	0.001	1/1000						
micro	μ	10 ⁻⁶	0.000 001	1/1 000 000						
nano	n	10 ⁻⁹	0.000 000 001	1/1 000 000 000						
pico	р	10 ⁻¹²	0.000 000 000 001	1/1 000 000 000 000						
femto	f	10 ⁻¹⁵	0.000 000 000 000 001	1/1 000 000 000 000 000						

Activity 2

Which SI unit and prefix would you use for the following quantities?

- 1. The mass of water in a test tube.
- 2. The time taken for a solution to change colour.
- 3. The radius of a gold atom.
- 4. The volume of water in a burette.
- 5. The amount of substance in a beaker of sugar.
- 6. The temperature of the blue flame from a Bunsen burner.

Sometimes, there are units that are used that are not combinations of SI units and prefixes.

These are often multiples of units that are helpful to use. For example, one litre is 0.001 $\mathrm{m}^3.$

Activity 4

Rewrite the following quantities.

- 1. 0.00122 metres in millimetres
- 2. 104 micrograms in grams
- 3. 1.1202 kilometres in metres
- 4. 70 decilitres in millilitres
- 5. 70 decilitres in litres
- 6. 10 cm^3 in litres

Important vocabulary for practical work

There are many words used in practical work. You will have come across most of these words in your GCSE studies. It is important you are using the right definition for each word.

Activity 5	
Join the boxes to link the word	d to its definition.
Accurate	A statement suggesting what may happen in the future.
Data	An experiment that gives the same results when a different person carries it out, or a different technique or set of equipment is used.
Precise	A measurement that is close to the true value.
Prediction	An experiment that gives the same results when the same experimenter uses the same method and equipment.
Range	Physical, chemical or biological quantities or characteristics.
Repeatable	A variable that is kept constant during an experiment.
Reproducible	A variable that is measured as the outcome of an experiment.
Resolution	This is the smallest change in the quantity being measured (input) of a measuring instrument that gives a perceptible change in the reading.
Uncertainty	The interval within the true value can be expected to lie.
Variable	The spread of data, showing the maximum and minimum values of the data.
Control variable	Measurements where repeated measurements show very little spread.
Dependent variable	Information, in any form, that has been collected.

Precise language

It is essential at AS and A-level to use precise language when you write reports and when you answer examination questions. You must always demonstrate that you understand a topic by using the correct and appropriate terms.

For example, you should take care when discussing bonding to refer to the correct particles and interactions between them.

Also, when discussing the interaction between particles in an ionic solid, you would demonstrate a lack of understanding if you referred to the particles as atoms or molecules instead of ions or the interaction between these ions as intermolecular forces rather than electrostatic forces. In this case, use of the incorrect terms would result in the loss of all the marks available for that part of a question.

Take care also to use the word 'chloride' and not 'chlorine' when referring to the ions in a compound such as sodium chloride. The word 'chlorine' should only be used for atoms or molecules of the element.

The periodic table

The periodic table of elements is shown on the back page of this booklet. The A-level course will build on what you've learned in your GCSE studies.

Activity 6

On the periodic table on the following page:

- Draw a line showing the metals and non-metals.
- Colour the transition metals blue.
- Colour the halogens yellow.
- Colour the alkali metals red.
- Colour the noble gases green.
- Draw a blue arrow showing the direction of periods.
- Draw a red arrow showing the direction of groups.
- Draw a blue ring around the symbols for all gases.
- Draw a red ring around the symbols for all liquids.

(18) (18) He He badium	2 20.2 Neon 10	39.9 Ar argon 18	83.8 Krypton	36 131.3 Xe	xenon 54	[222] Rn radon 86	1 but	175.0 Lu Iutetium 71	[262] lawrencium 103
2	(17) 19.0 fuorine 9	35.5 CI chlorine 17	79.9 Br bromine	35 126.9 	iodine 53	[210] At astatine 85	en reportec	173.1 Yb ytterbium 70	[259] Nobelium 102
Q	(16) 0 8 8	32.1 Suffur 16	79.0 Se selenium	34 127.6 Te	tellurium 52	[209] Po polonium 84	16 have bee cated	168.9 Tm thulium 69	[258] Md 101
Q	(15) 14.0 N 7	31.0 Phosphorus 15	74.9 As arsenic	33 Sb Sb	antimony 51	209.0 Bi bismuth 83	c numbers 112-116 hav not fully authenticated	167.3 Er erbium 68	[257] Famium 100
4	(14) C carbon 6	28.1 Silicon 14	72.6 Ge germanium	32 Sn	50 E	207.2 Pb Iead 82	tomic numt not ful	164.9 Ho holmium 67	[252] ES 99
e	(13) 10.8 5 5	27.0 Al aluminium 13	5 - E	31 114.8	indium 49	204.4 TI thallium 81	Elements with atomic numbers 112-116 have been reported but not fully authenticated	162.5 Dy dysprosium 66	californium 98
		(12)	65.4 Zn zinc	Cd	cadmium 48	200.6 Hg ^{mercury} 80	Elem	158.9 Tb terbium d	BK BK 97
		(11)	63.5 Cu copper	29 Ag	silver 47	197.0 Au 90ld 79	[280] Rg 111	157.3 Gd gadolinium 64	eurlum 96
		(10)	58.7 Ni nickel	28 Pd	palladium 46	195.1 Pt platinum 78	[281] Ds damstadtum 110	152.0 Eu europium 63	Am americium 95
		(6)	58.9 Co cobalt	27 102.9 Rh	rhodium 45	192.2 Ir iridium 77	[276] Mt 109	150.4 Sm 62	Putonium 94
1.0 H .0		(8)	55.8 Fe	26 Bu	ruthenium 44	190.2 Os osmium 76	[270] Hs hassium 108	[145] Pm promethium 61	neptunium 93
		Ø	54.9 Mn manganese	25 [88]	technetium 43	186.2 Re rhenium 75	[272] Bh bohrium 107	144.2 Nd neodymium 60	238.0 uranium 92
	nass Imber	(9)	E	_	molybdenum 42	183.8 W tungsten 74	[271] Sg seaborgium 106	140.9 Pr 59	231.0 Pa 91
	Key relative atomic mass symbol name atomic (proton) number	(5)	- 5		41 niobium	180.9 Ta tantalum 73	Db Db dubnium 105	140.1 Ce 58	132.0 thorium 90
	relati	(4)	- E	91.2 Zr	zirconium 40	178.5 Hf hafnium 72	[267] Rf nutherfordium 104	L]
		(3)	45.0 Sc scandium		yttrium 39	138.9 La * Ianthanum 57	[227] Ac † actinium n 89	lides	sec
8	(2) 9.0 Be beryllium 4	24.3 Mg nagnesium 12	40.1 Ca calcium	20 87.6	strontium 38	137.3 Ba barium 56	[226] Ra radium 88	Lanthar	3 Actinic
-	(1) Li 3	23.0 sodium 11	39.1 K	86.5 Bb	nubidium 37	132.9 Cs caesium 55	[223] Fr francium 87	* 58 - 71 Lanthanides	† 90 - 103 Actinides

Activity 7

Use the periodic table to find the following:

- 1. The atomic number of: osmium, sodium, lead, chlorine.
- 2. The relative atomic mass of: helium, barium, europium, oxygen.
- 3. The number of protons in: mercury, iodine, calcium.
- 4. The symbol for: gold, lead, copper, iron.
- 5. The name of: Sr, Na, Ag, Hg.
- 6. THInK can be written using a combination of the symbols for Thorium, Indium and Potassium (ThInK). Which combinations of element symbols could be used to make the following words?

AMERICA, FUN, PIRATE, LIFESPAN, FRACTION, EROSION, DYNAMO

Activity 8: research activity

Research either:

The history of the periodic table

OR

The history of models of atomic structure.

Present your findings as a timeline. You should include the work of at least four people. For each, explain what evidence or experiments they used and how this changed the understanding of chemistry.

Relative atomic mass (A_r)

If there are several isotopes of an element, the relative atomic mass will take into account the proportion of atoms in a sample of each isotope.

For example, chlorine gas is made up of 75% of chlorine-35 $^{35}_{17}Cl$ and 25% of chlorine-37 $^{37}_{17}Cl$.

The relative atomic mass of chlorine is therefore the mean atomic mass of the atoms in a sample, and is calculated by:

$$A_r = \left(\frac{75.0}{100} \times 35\right) + \left(\frac{25.0}{100} \times 37\right) = 26.25 + 9.25 = 35.5$$

Activity 9

- 1. What is the relative atomic mass of Bromine, if the two isotopes, ⁷⁹Br and ⁸¹Br, exist in equal amounts?
- 2. Neon has three isotopes. ²⁰Ne accounts for 90.9%, ²¹Ne accounts for 0.3% and the last 8.8% of a sample is ²²Ne. What is the relative atomic mass of neon?
- 3. Magnesium has the following isotope abundances: ²⁴Mg: 79.0%; ²⁵Mg: 10.0% and ²⁶Mg: 11.0%. What is the relative atomic mass of magnesium?

Harder:

- 4. Boron has two isotopes, ¹⁰B and ¹¹B. The relative atomic mass of boron is 10.8. What are the percentage abundances of the two isotopes?
- 5. Copper's isotopes are ⁶³Cu and ⁶⁵Cu. If the relative atomic mass of copper is 63.5, what are the relative abundances of these isotopes?

Relative formula mass (M_r)

Carbon dioxide, CO_2 has 1 carbon atom ($A_r = 12.0$) and two oxygen atoms ($A_r = 16.0$). The relative formula mass is therefore

$$M_{\rm r} = (12.0 \times 1) + (16.0 \times 2) = 44.0$$

Magnesium hydroxide Mg(OH)₂ has one magnesium ion ($A_r = 24.3$) and two hydroxide ions, each with one oxygen ($A_r = 16.0$) and one hydrogen ($A_r = 1.0$).

The relative formula mass is therefore:

 $(24.3 \times 1) + (2 \times (16.0 + 1.0)) = 58.3$

Activity 10

Calculate the relative formula mass of the following compounds:

- 1. Magnesium oxide MgO
- 2. Sodium hydroxide NaOH
- 3. Copper sulfate CuSO₄
- 4. Ammonium chloride NH₄Cl
- 5. Ammonium sulfate (NH₄)₂SO₄

Common ions

Positive ior	ns (cations)	Negative ions (anions)		
Name	Symbol	Name	Symbol	
Hydrogen	H⁺	Hydroxide	OH⁻	
Sodium	Na⁺	Chloride	CI⁻	
Lithium	Li ⁺	Bromide	Br⁻	
Silver	Ag⁺	Oxide	0 ²⁻	
Magnesium	Mg ²⁺	Hydrogencarbonate	HCO ₃ ⁻	
Calcium	Ca ²⁺	Nitrate	NO_3^-	
Zinc	Zn ²⁺	Sulfate	S04 ²⁻	
Aluminium	Al ³⁺	Carbonate	CO ₃ ²⁻	
Ammonium	NH_4^+	Phosphate	P04 ³⁻	

Some elements have more than one charge. For example, iron can form ions with a charge of +2 or +3. Compounds containing these are named Iron(II) and Iron(III) respectively.

Other common elements with more than one charge include:

Chromium(II) and chromium(III)

Copper(I) and copper(II)

Lead(II) and lead(IV)

Activity 11

On the periodic table on the following page, colour elements that form one atom ions (eg Na⁺ or O^{2-}) according to the following key:

Charge	Colour
+1	red
+2	yellow
+3	green
-1	blue
-2	brown

									
٥	(18) 4.0 He helium 2	20.2 Ne 10	39.9 Ar argon 18	83.8 Kr krypton 36	131.3 Xerron 54	[222] Rn radon 86	d but	175.0 Lu Iutetium 71 [262] Lr Iawrencium 103	
2	(17)	19.0 F fluorine 9	35.5 CI chlorine 17	79.9 Br bromine 35	126.9 iodine 53	[210] At astatine 85	en reporte	173.1 Ytterbium 70 [259] No nobelium 102	
9	(16)	16.0 O 8	32.1 S sulfur 16	79.0 Se selenium 34	127.6 Te tellurium 52	[209] Po polonium 84	Elements with atomic numbers 112-116 have been reported but not fully authenticated	168.9 Tm thulium 69 [258] Md 101	
C1	(15)	14.0 N nitrogen 7	31.0 P phosphorus 15	74.9 As arsenic 33	121.8 Sb antimony 51	209.0 Bi bismuth 83	c numbers 112-116 hav not fully authenticated	167.3 Er erbium 68 68 68 68 68 68 68 68 68 68 70 700 100	
4	(14)	12.0 C carbon 6	28.1 Si 14	72.6 Ge germanium 32	118.7 Sn 50	207.2 Pb lead 82	ttomic num not fu	164.9 Holmium 67 [252] Es einsteinium 99	
ю	(13)	10.8 B boron 5	27.0 Al aluminium 13	69.7 Ga gallium 31	114.8 In indium 49	204.4 TI thallium 81	nents with a	162.5 Dy dysprosium dysprosium 66 66 66 61 251 251 251 38 298	
			(12)	65.4 Zn 30	112.4 Cd cadmium 48	200.6 Hg ^{mercury} 80		158.9 Tb terbium 65 [247] Bk berkelium 97	
			(11)	63.5 Cu copper 29	107.9 Ag silver 47	197.0 Au ^{gold} 79	8	157.3 Gdd gadolinium 64 [247] Cm curium 96	
	(10)	58.7 Ni nickel 28	106.4 Pd palladium 46	195.1 Pt platinum 78	[281] DS damstattum 110	152.0 Eu europium 63 63 [243] Am americium 95			
			(6)	58.9 Co cobalt 27	102.9 Rh rhodium 45	192.2 Ir iridium 77	[276] Mt neitnenum 109	150.4 Samanum samanum (244) Pu plutonium 94	
	1.0 Hydrogen 1		(8)	55.8 Fe iron 26	101.1 Ru ruthenium 44	190.2 Os osmium 76	[270] Hs hassium 108	Promethium 61 [237] [237] Np Inptunium 33	
			0	54.9 Mn manganese 25	[98] Tc technetium 43	186.2 Re rhenium 75		1442 Nd 60 0 1 1 1442 80 10 10 10 10 10 10 10 10 10 10 10 10 10	
		mass umber	(9)	52.0 Cr chromium 24	Ę	183.8 W tungsten 74	[271] Sg seaborgium 106	140.9 Presedymium 59 231.0 Pa protactinium 91	
	Key	relative atomic mass symbol name atomic (proton) number	(5)	50.9 V vanadium 23	92.9 Nb niobium 41	180.9 Ta tantalum 73		140.1 Cerium 58 232.0 Th thorium 90	
		relat atomi	(4)	47.9 Ti titanium 22	91.2 Zr zirconium 40	178.5 Hf hafnium 72	[267] Rf rutherfordium 104		
			(3)	45.0 Sc 21	88.9 Yttrium 39	138.9 La * Ianthanum 57	[227] Ac † actinium 89	unides des	
0	(2)	9.0 Be beryllium 4	24.3 Mg magnesium 12	40.1 Ca calcium 20	87.6 Sr strontium 38	137.3 Ba barium 56	[226] Ra radium 88	* 58 - 71 Lanthanides † 90 - 103 Actinides	
-	(1)	6.9 Li Ithium 3	23.0 Na sodium 11	39.1 K potassium 19	85.5 Rb rubidium 37	132.9 Cs caesium 55	[223] Fr francium 87	* 58 - 7 [.] † 90 - 1(

lonic compounds must have an overall neutral charge. The ratio of cations to anions must mean that there is as many positives as negatives.

For example:

Na	Cl	Mg	0	MgC	il ₂
Na⁺	Cl⁻	Mg ²⁺	0 ²⁻	Mg ²⁺	CI [−] CI [−]
+1	-1	+2	-2	+2	-2

Activity 12

Work out what the formulas for the following ionic compounds should be:

- 1. Magnesium bromide
- 2. Barium oxide
- 3. Zinc chloride
- 4. Ammonium chloride
- 5. Ammonium carbonate
- 6. Aluminium bromide
- 7. Iron(II) sulfate
- 8. Iron(III) sulfate

Diatomic molecules

A number of atoms exist in pairs as diatomic (two atom) molecules.

The common ones that you should remember are:

Hydrogen $H_2,$ Oxygen $O_2,$ Fluorine $F_2,$ Chlorine $Cl_2,$ Bromine $Br_{2,}$ Nitrogen N_2 and Iodine I_2

Common compounds

There are several common compounds from your GCSE studies that have names that do not help to work out their formulas. For example, water is H_2O .

Act	ivity 13: Research activity
Wha	at are the formulas of the following compounds?
1.	Methane
2.	Ammonia
3.	Hydrochloric acid
4.	Sulfuric acid
4.	
5.	Sodium hydroxide
6.	Potassium manganate(VII)
7.	Hydrogen peroxide

Balancing equations

Chemical reactions never create or destroy atoms. They are only rearranged or joined in different ways.

When hydrogen and oxygen react to make water:

hydrogen + oxygen \rightarrow water

 $H_2 + O_2 \rightarrow H_2O$

There are two hydrogen atoms on both sides of this equation, but two oxygen atoms on the left and only one on the right. This is not balanced.

This can be balanced by writing:

 $2H_2 + O_2 \rightarrow 2H_2O$

The reactants and products in this reaction are known and you can't change them. The compounds can't be changed and neither can the subscripts because that would change the compounds. So, to balance the equation, a number must be added in front of the compound or element in the equation. This is a coefficient. Coefficients show how many atoms or molecules there are.

Activity 14

Write balanced symbol equations for the following reactions. You'll need to use the information on the previous pages to work out the formulas of the compounds. Remember some of the elements may be diatomic molecules.

- 1. Aluminium + oxygen \rightarrow aluminium oxide
- 2. Methane + oxygen \rightarrow carbon dioxide + water
- 3. Aluminium + bromine \rightarrow aluminium bromide
- 4. Calcium carbonate + hydrochloric acid \rightarrow calcium chloride + water + carbon dioxide
- 5. Aluminium sulfate + calcium hydroxide \rightarrow aluminium hydroxide + calcium sulfate

Harder:

6. Silver nitrate + potassium phosphate \rightarrow silver phosphate + potassium nitrate

More challenging:

7. Potassium manganate(VII) + hydrochloric acid \rightarrow

potassium chloride + manganese(II) chloride + water + chlorine

Moles

A mole is the amount of a substance that contains 6.02×10^{23} particles.

The mass of 1 mole of any substance is the relative formula mass (M_r) in grams.

Examples:

One mole of carbon contains 6.02×10^{23} particles and has a mass of 12.0 g Two moles of copper contains 12.04×10^{23} particles, and has a mass of 127 g 1 mole of water contains 6.02×10^{23} particles and has a mass of 18 g

The amount in moles of a substance can be found by using the formula:

Amount in moles of a substance = $\frac{\text{mass of substance}}{\text{relative formula mass}}$

Activity 15			
ill in the table.			
Substance	Mass of substance	Amount/moles	Number of particles
Helium			18.12 × 10 ²³
Chlorine	14.2		
Methane		4	
Sulfuric acid	4.905		

Empirical formula

If you measure the mass of each reactant used in a reaction, you can work out the ratio of atoms of each reactant in the product. This is known as the empirical formula. This may give you the actual chemical formula, as the actual formula may be a multiple of this. For example, hydrogen peroxide is H_2O_2 but would have the empirical formula HO.

Use the following to find an empirical formula:

- 1. Write down reacting masses
- 2. Find the amount in moles of each element
- 3. Find the ratio of moles of each element

Example:

A compound contains 2.232 g of ion, 1.284 g of sulfur and 1.920 g of oxygen. What is the empirical formula?

Element	Iron	Sulfur	Oxygen
mass/relative atomic mass	2.232/55.8	1.284/32.1	1.920/16.0
Amount in moles	0.040	0.040	0.120
Divide by smallest value	0.040/0.040	0.040/0.040	0.120/0.040
Ratio	1	1	3

So the empirical formula is FeSO_{3.}

If the question gives the percentage of each element instead of the mass, replace mass with the percentage of an element present and follow the same process.

Activity 16

Work out the following empirical formulas:

1. The smell of a pineapple is caused by ethyl butanoate. A sample is known to contain only 0.180 g of carbon, 0.030 g of hydrogen and 0.080 g of oxygen. What is the empirical formula of ethyl butanoate?

2. Find the empirical formula of a compound containing 0.0578 g of titanium, 0.288 g of carbon, 0.012 g of hydrogen and 0.384 g of oxygen.

3. 300 g of a substance are analysed and found to contain only carbon, hydrogen and oxygen. The sample contains 145.9 g of carbon and 24.32 g of hydrogen. What is the empirical formula of the compound?

4. Another 300 g sample is known to contain only carbon, hydrogen and oxygen. The percentage of carbon is found to be exactly the same as the percentage of oxygen. The percentage of hydrogen is known to be 5.99%. What is the empirical formula of the compound?

-	2											e	4	S	9	2	0
(t)	(2)			Key			1.0 hydrogen 1					(13)	(14)	(15)	(16)	(17)	(18) 4.0 helium 2
6.9 Li lithium	9.0 Be beryllium		relati	relative atomic mass symbol name	mass							10.8 boron 5	12.0 C carbon 6	14.0 N nitrogen	16.0 O oxygen g	19.0 F fluorine a	20.2 Ne 10
23.0 Na	24.3 Mg	_		- (insold) o		-						27.0 Al	28.1 Si	31.0 P	32.1 S	35.5 CI	39.9 Ar
sodium 11	magnesium 12	(3)	(4)	(2)	(9)	6	(8)	(6)	(10)	(11)	(12)	aluminium 13	silicon 14	phosphorus 15	sulfur 16	chlorine 17	argon 18
× 3.1	40.1 Ca	45.0 Sc	47.9 Ti	50.9 V	<mark>ت</mark> 22.0	б. Ил	55.8 Fe	028.9	58.7 Ni	63.5 Cu	65.4 Zn	69.7 Ga	72.6 Ge	74.9 As	79.0 Se	79.9 Br	83.8 K
potassium 19	calcium 20	scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	iron 26	cobalt 27	nickel 28	copper 29	zinc 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
85.5 Rb	87.6 Sr	88.9 Y	91.2 Zr	92.9 Nb	96.0 Mo	<mark>و</mark> 38	101.1 Ru	102.9 Rh	106.4 Pd	107.9 Ag	112.4 Cd	114.8 In	118.7 Sn	121.8 Sb	127.6 Te	126.9 	131.3 Xe
rubidium 37	strontium 38	yttrium 39	zirconium 40	niobium 41	molybdenum 42	technetium 43	ruthenium 44	rhodium 45	palladium 46	silver 47	cadmium 48	indium 49	tin 50	antimony 51	tellurium 52	iodine 53	xenon 54
132.9 Cs	137.3 Ba	138.9 La *	178.5 Hf	180.9 Ta	183.8 W	186.2 Re	190.2 Os	192.2 Ir	195.1 Pt	197.0 Au	200.6 Hg	204.4 TI	207.2 Pb	209.0 Bi	[209] Po	[210] At	[222] Rn
caesium 55	barium 56	lanthanum 57	hafnium 72	tantalum 73	tungsten 74	rhenium 75	osmium 76	iridium 77	platinum 78	gold 79	mercury 80	thallium 81	lead 82	bismuth 83	polonium 84	astatine 85	radon 86
[223] Fr francium 87	[226] Ra radium 88	Ac † actinium 89	[267] Rf ruthertordium 104	[268] Db dubnium 105	[271] Sg seaborgium 106	[272] Bh bohrium 107	[270] Hs hassium 108	[276] Mt meitnenium 109	[281] Ds damstadtium 110	[280] Fg roentgenium 111	Elen	Elements with atomic numbers 112-116 have been reported but not fully authenticated	atomic num not fu	c numbers 112-116 har not fully authenticated	16 have be cated	en reportec	1 but
											0.017				0.001		
* 58 – 71	* 58 - 71 Lanthanides	nides		Cerium 58	Pr Pr 59	144.2 Nd neodymium 60	Pm promethium 61	150.4 Sm samanum 62	Eu Eu europium 63	157.3 Gd gadolinium 64	158.9 Tb terbium 65	dysprosium 66	164.9 Ho holmium 67	167.3 Er erbium 68	Tm Tm fhulium 69	ytterbium 70	175.0 Lu hutetium 71
† 90 – 1(† 90 - 103 Actinides	des		232.0 Th thorium 90	231.0 Pa protactinium 91	238.0 U uranium 92	[237] Np neptunium 93	[244] Pu 94	[243] Am americium 95	[247] Cm curium 96	[247] Bk berkelium 97	[251] Cf californium 98	[252] Es einsteinium 99	[257] Fm femium 100	[258] Md mendelevium 101	[259] No nobelium 102	[262] Lr lawrencium 103

The Periodic Table of the Elements