

ANATOMY & PHYSIOLOGY

Revision Booklet

Mike Tyler@MikeTylerSport

CONTENTS

Foreword	4
How to use this Revision Booklet	5
Other Revision Techniques	6

Progress Tracker	7
Graphic Organisers	
Skeletal System	9
Muscular System	10
Cardiovascular System	11
Respiratory System	12
Energy Systems	13
Skeletal System Tests	
S1: Major Bones	14
S2: Types and Functions of Bones	16
S ₃ : Major Bones & Functions of the System	18
S4: Joint Classifications & Types	20
S ₅ : Functions of the System, Bones Forming Joints & Movements Available	22
S6: Major Bones, Joint Classifications & Types, & Responses to Exercise	24
S7: Types & Functions of Bones, Bones Forming Joints, Movements Available, Adaptations to Exercise	27
Muscular System Tests	
M1: Types of Muscle	30
M2: Types of Muscle	31
M3: Types of Muscle & Antagonistic Pairs	33
M4: Major Muscles & Types of Contraction	35
M5: Antagonistic Pairs & Fibre Types	37
M6: Types of Muscle, Types of Contraction & Responses to Exercise	40
M7: Major Muscles, Types of Contraction, Fibre Types, & Nervous Control	41
Cardiovascular System Tests	
C1: Structure of the System	43
C2: Structure of the System	44
C3: Structure of the System and Functions of the System	46
C4: Structure of the System and the Cardiac Cycle	47
	2

C ₅ : Structure of the System, Functions of the System, & the Cardiac Cycle	49
C6: Structure of the System, Cardiac Cycle, & Responses to Exercise	51
C7: Structure of the System, Cardiac Cycle, & Adaptations to Exercise	53
Respiratory System Tests	
R1: Structure of the System	
R2: Mechanisms of Breathing56	
R ₃ : Structure of the System & Lung Volumes	
R4: Mechanisms of Breathing & Gaseous Exchange	
R5: Gaseous Exchange & Control of Breathing	
R6: Structure of the System, Lung Volumes & Mechanisms of Breathing	
R7: Mechanisms of Breathing, Control of Breathing, & Adaptations to Exercise	
Energy Systems Tests	
E1: The Role of ATP	67
E2: ATP and the ATP-PC System	68
E3: The Lactate System	70
E4: ATP-PC and Lactate Energy Systems	72
E ₅ : Lactate and Aerobic Energy Systems	74
E6: Lactate and Aerobic Energy Systems	76
E7: Lactate System, Aerobic System and Adaptations to exercise (of all three systems)	79

Foreword

About me

I'm Mike, and I live in the West Midlands, England. I have a degree in Sport Science from Loughborough University, the world's top university for Sport.

I have been teaching A&P for nearly a decade. I have taught Anatomy and Physiology for BTEC, OCR, NCFE and A-Level. I love A&P, because I love the brilliance of the human body. I love how our bodies move, and play, and heal, and work. No one could ever build a machine so complex and awe-inspiring.

I don't just teach in a classroom, but I am on YouTube, too. You can subscribe to my YouTube channel for more Sport-related content, just search for MikeTylerSport or click the YouTube icon.

About you

You're studying Anatomy and Physiology. You're probably studying it at school or college, and you need to deepen your understanding. Perhaps you even have an exam soon. You know you need to revise, but perhaps you aren't sure where to start or how to revise effectively. This booklet is for you.

By working through these tests, and spreading them out over time, you can give yourself a fighting chance of learning what you need to learn to really bolster your A&P subject knowledge.

Don't sit and do them all in one go. Do one or two a day, and keep returning to them, working your way through them until you can do the whole lot without any trouble. There are seven tests for each body system: start with test one!

About this booklet

This revision booklet is designed to help Level 3 learners prepare for examinations in Anatomy and Physiology.

While this booklet is produced specifically for the new (from 2016) BTEC Level 3 Unit One specification, there is a lot of crossover in content with several other specifications. You might find this helpful if you are studying any of the following Level 3 courses:

BTEC Nationals in Sport BTEC Nationals in Sport & Exercise Science OCR Technicals in Sport & Physical Activity NCFE in Sport & Physical Activity

Of course, even if you're not studying on any of these, you're welcome to make use of this booklet to deepen your knowledge of Anatomy and Physiology.

How to use this Revision Booklet

Study the graphic organisers

All the basic material you need to know before you can really become proficient in A&P is contained in each of the Graphic Organisers. Take the time to look at them, investigate them, try to become familiar with them. They are colour coded, with one for each of the five body systems.

Skeletal Red
Muscular Yellow
Cardiovascular Blue
Respiratory Green
Energy Systems Purple

Watch the related YouTube videos

My YouTube channel contains several videos which link directly to these tests and are designed to give you a deeper understanding of the subject. The videos should help you do well in these tests and in your exam, but more importantly will help you deepen your understanding of Anatomy and Physiology. Just search for

MikeTylerSport or click the YouTube icon

Use some of the revision techniques on the next page

There are loads of different ways to revise, but one of the most important things to remember is that you should revise a little bit, and often. Don't try to cram everything into your brain on the night before the exam. This strategy may feel like it's working but the science shows that it is not very helpful for a subject like A&P where you really need to know your stuff, and how it all links together.

The next page includes my top three techniques for effective revision, besides working through the tests in this booklet.

Other Revision Techniques

Select a topic to review from the graphic organiser

COVER

Put the knowledge organiser away, or cover it up

WRITE

Try to write down everything you can remember

CHECK

Go back to the knowledge organiser & fill in any gaps

READ

Identify the information you want to study

DRAW

Produce pictures, diagrams or icons to represent the ideas

SAY

Now using **only** what you've drawn, try to put the information in your own words

Revision Cards

Side One: A Question **Side Two:** The Answer

Name the five functions of the CV System

- 1. Delivery of Oxygen & Nutrients
- 2. Removal of Waste Products
- 3. Thermoregulation
- 4. Fighting Infection
- 5. Blood Clotting

Write several, mix them up, then select a few to answer from memory

Progress Checker

The Progress Checker is where you record your grades from each test.

You only need to write **FAIL**, **PASS**, or **EXCEL** in each box. Each test will tell you how many marks are needed for each grade.

The tests are graded as follows:

Below 60% FAIL
60 – 80% PASS
Above 80% EXCEL

You should aim to be able to sit *any test* in this booklet and achieve an EXCEL grade! If this means retaking tests, then that is fine. Just make sure there is at least one day's gap between attempts.

Write your grades in pencil so that you can easily update them as you improve.

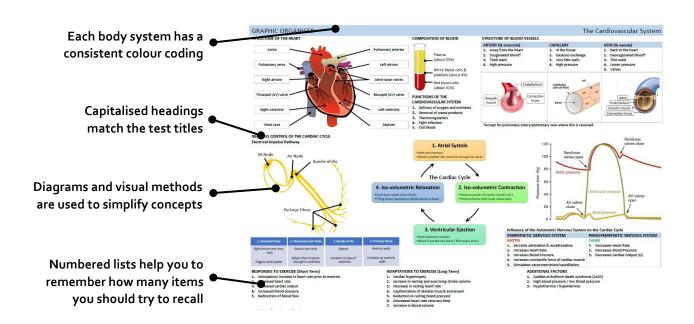
	Test S1	Test S2	Test S3	Test S4	Test S5	Test S6	Test S7
Skeletal							
	Test C1	Test C2	Test C3	Test C4	Test C5	Test C6	Test C7
			1				
	Test R1	Test R2	Test R3	Test R4	Test R5	Test R6	Test R7
			1				
	Test E1	Test E2	Test E3	Test E4	Test E5	Test E6	Test E7
	Test M1	Test M2	Test M3	Test M4	Test M5	Test M6	Test M7

Muscular

Cardiovascular

Respiratory

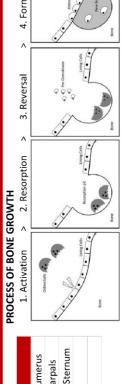
Energy Systems

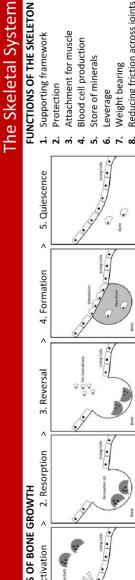

Graphic Organisers

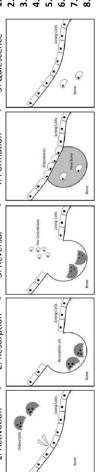
The graphic organisers on the next few pages focus on the central and most essential information that you will need to know in order to develop a strong understanding of Anatomy and Physiology. They don't cover everything, but they are a good starting point.

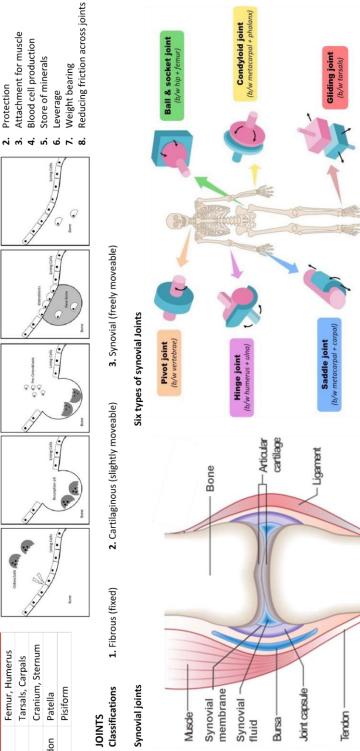
There is one graphic organiser for each of the body systems.

Once you have taken a test, return to the Graphic Organisers to mark your answers.


You should **always** correct any mistakes or missed answers after taking the test.




PHIC ORGANISER

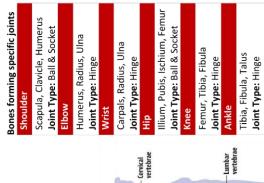

Cranium, Sternum Femur, Humerus Tarsals, Carpals Patella Reducing friction across a joint, embedded in a tendon Leverage & red blood cell production Individualised functions **DF BONES & THEIR FUNCTIONS** Weight bearing Protection amoid Bones egular Bones ort Bones g Bones t Bones

BONES

Synovial

Muscle

Synovial


ral column

below)

arpals

Bursa fluid

Tendon


Thoracic— vertebrae

Red & Appendicular in Blue

am above)

OF THE SKELETON

irsals

ADAPTATIONS TO EXERCISE (Long Term)

2. Increased ligament strength Increased bone strength

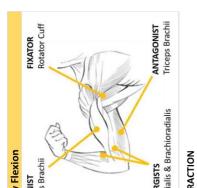
Age: Young children at risk of greenstick fracture, resistance training may stunt growth (though disputed) Skeletal disease: exercise offsets the risks of arthritis, osteoporosis ADDITIONAL FACTORS

ulated increase of mineral uptake in bones due to weight bearing exercise

s: excessive curvature of thoracic spine : excessive curvature of *lumbar* spine

Deviations

re & Alignment (as shown)

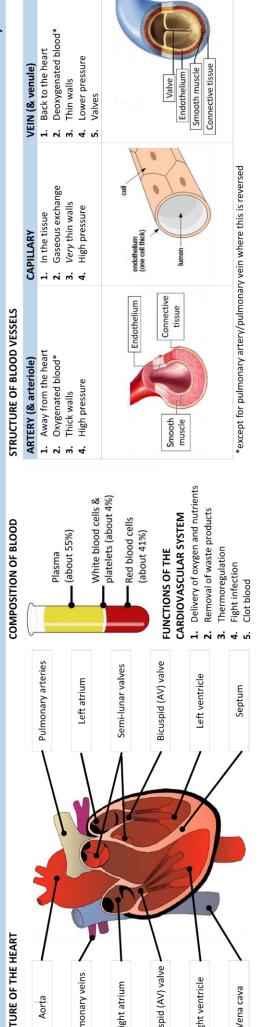

al, 12 Thoracic, 5 Lumbar, 4 Coccygeal vertebrae SES TO EXERCISE (Short Term)

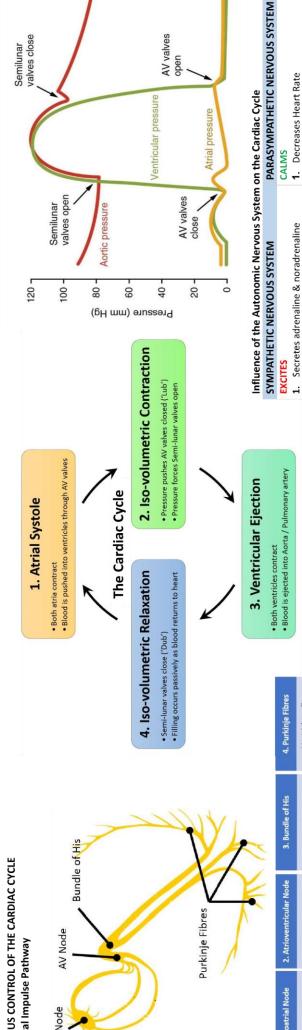
GRAPHIC ORGANISER

The Muscular System

hat pull in the opposite direction.

nent (also called prime mover)
uld make opposite joint movement)
e production)
sing the muscle's origin)


Type IIx iximal force production quires all the fibres, in all motor units to fire.


Type IIa

e of Maximal Force - 20

L 90

nuscle contraction

ADAPTATIONS TO EXERCISE (Long Term)

cipatory increase in heart rate prior to exercise

eased cardiac output eased blood pressure rection of blood flow

eased heart rate

USES TO EXERCISE (Short Term)

Conducts up ventricle

Conducts to base of

Delays, then conducts through to ventricles

atrial systole

walls

Ventricle walls

Septum

Septum near atria

ium near vena

cava

- Increase in resting and exercising stroke volume Cardiac hypertrophy
 - Decrease in resting heart rate
- Capillarisation of skeletal muscle and alveoli
 - Reduction in resting blood pressure
 - 5.
- Decreased heart rate recovery time Increase in blood volume
 - 6.

ADDITIONAL FACTORS

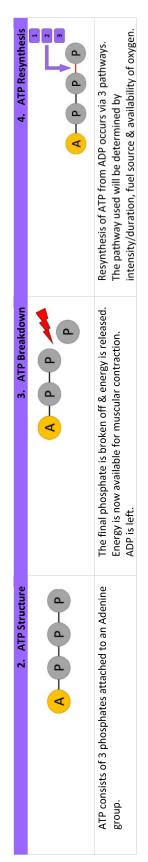
Increases contractile force of cardiac muscle

Increases Blood Pressure

Increases Heart Rate

Stimulates vasoconstriction/vasodilation.

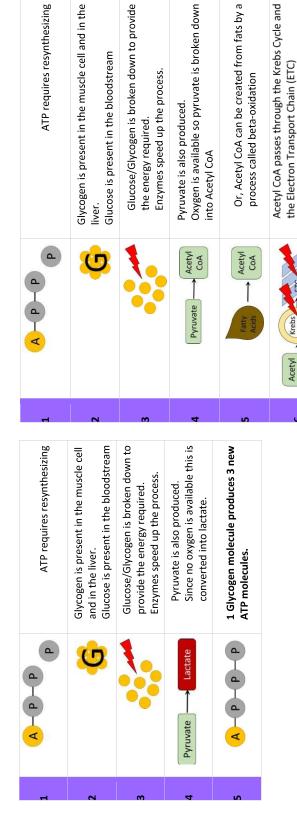
3. Decreases Cardiac Output (Q)


Decreases Blood Pressure

- Sudden arrhythmic death syndrome (SADS)
 - High blood pressure / low blood pressure
 - Hyperthermia / hypothermia

The Respiratory System

e respiratory system


2. THE LACTATE ENERGY SYSTEM

Type: Anaerobic Glycolysis
Fuel Source: Glycogen
Duration: Approx. 10 secs to 2 mins
Recovery Time: 1-2 hours
Used in: Stop/start games, field & court sports

3. THE AEROBIC ENERGY SYSTEM

Type: Aerobic Glycolysis (& Lipolysis)
Fuel Source: Glycogen and Fat
Duration: Longer than 2 mins
Recovery Time: 24-48 hours

Used in: Long distance & endurance events

1 Glycogen molecule produces about 34 new

ATP molecules.

By products include CO2, O2 and H2O.

Acetyl

More energy is produced here.

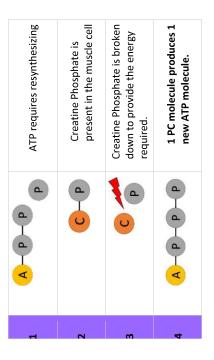
ADDITIONAL FACTORS

Energy Systems

- Diabetes (hypoglycaemic attack)
 Children's lack of a lactate system

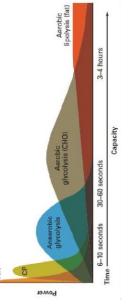
ATP is stored in the muscles.

No other compound can be used by the body. It is readily available to be broken down.


1. THE ATP-PC (ALACTIC) ENERGY SYSTEM

Type: Anaerobic

Fuel Source: Creatine Phosphate (PC) Duration: Approx. 6-10 seconds


Recovery Time: About 3 mins

Used in: Sports requiring explosive power

ENERGY CONTINUUM

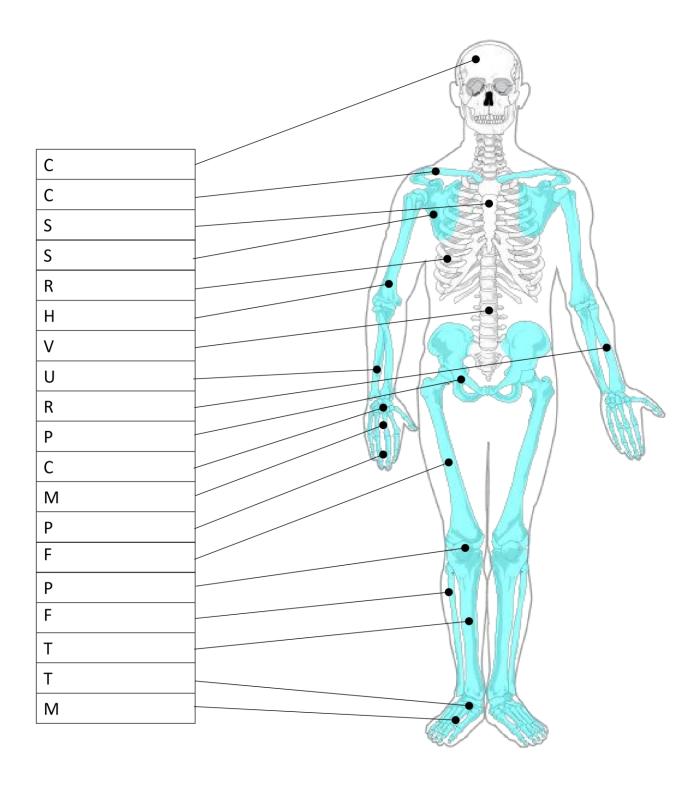
proportion is determined by intensity of demand for energy. At any given time, all the energy systems are in use. The

ADAPTATIONS TO EXERCISE (Long Term)

ATP-PC (alactic) energy system 1. Increased creatine stores.

Increase tolerance to lactate. Lactate energy system

Aerobic energy system


- Increased use of fats as an energy source.
 Increased storage of glycogen.
 Increased numbers of mitochondria.

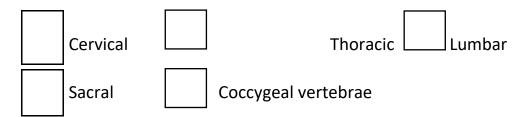
Made by Mike Tyler @MikeTylerSport

Test S1: Major Bones

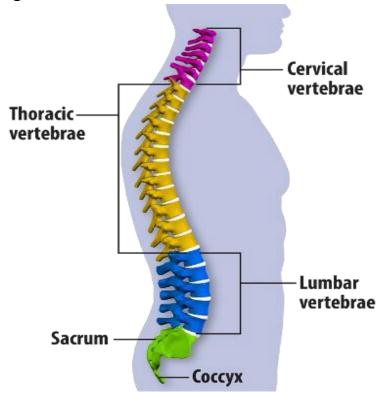
NAME	SCORE
	/28

GRADE (Circle)			
Under 16	17 to 22	Over 22	
FAIL	PASS	EXCEL	

Areas of the Skeleton


Identify the two divisions of the skeleton

Α	The central part of the skeleton, mainly for protection	


14

А	The limbs, mainly for movement

Spine: how many vertebrae in each section?

Curvature & Alignment:

Postural Deviations

Kyphosis: excessive curvature of the _____ spine

Lordosis: excessive curvature of the _____ spine

Test S2: Types and Functions of Bones

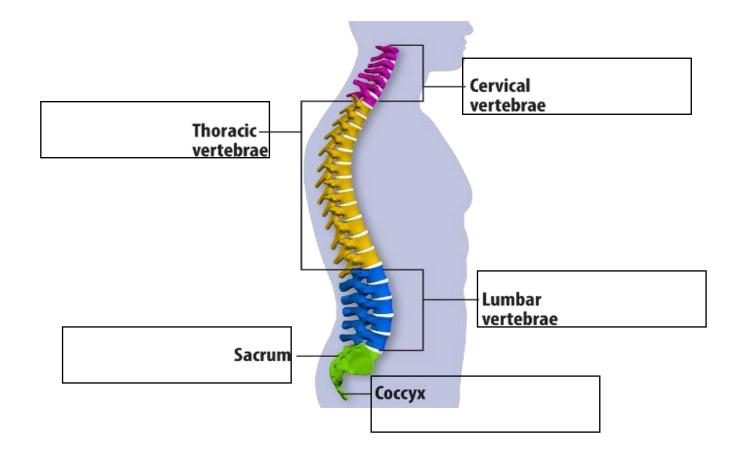
NAME	SCORE
	/20

GRADE (Circle)				
Under 12	12 to 16	Over 16		
FAIL	PASS	EXCEL		

Types and functions of bones: complete this table by naming the five types of bones and providing examples of each

Type of Bone	Function	Example
1. L	Leverage & red blood cell production	
2. S	Weight bearing	
3. F	Protection	
4. S	Reducing friction across a joint, embedded in a tendon	
5. I	Individualised functions	

Process of Bone Growth: Complete the table to describe bone remodelling


Phase Name					
Diagram	Osteoclasts Lining Cells Bone	Resorption pit Bone Lining Cells	Pre-Osteoblasts Uning Cells	Osteoblasts Lining Cells New bone Bone	Lining Cells Bone
Description					

NAME

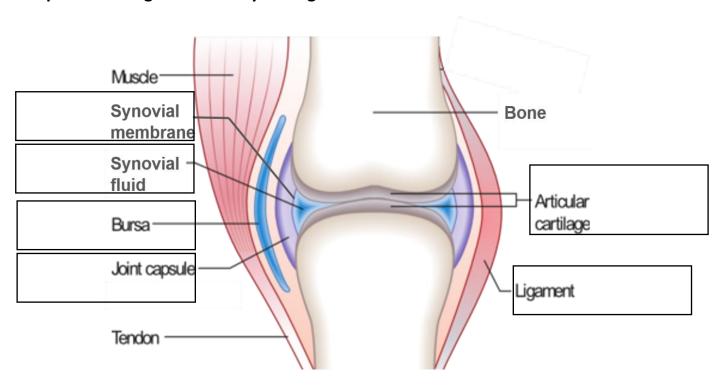
Functions of the	Skeleton: comi	olete the list to	show the 8	functions of	the skeleton
i diletions of the	JICICIOII. COIII	JIC 10 1110 1131 10	JIIOW LIIC O	I GII CLIOIIS OI	LIIC SICICION

1. S	f
2. P	
3. A	for m
4. B	cp
5. S	of m
6. L	
7. W	b
8. R	_ f across j

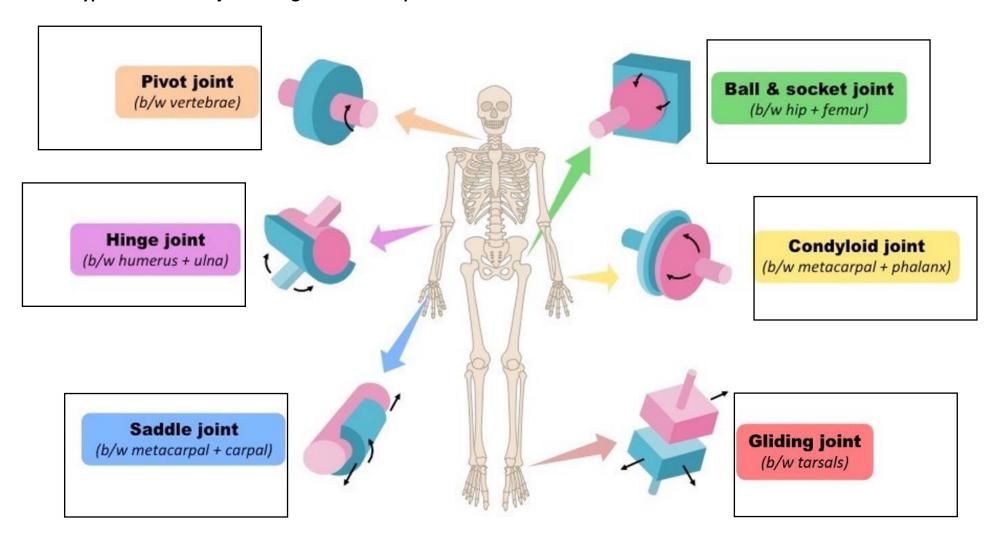
Spine Curvature & Alignment: label the sections of the spine

Test S4: Joint Classifications and Types

NAME	SCORE
	/21


GRADE (Circle)				
Under 13	13 to 17 PASS	Over 17 EXCEL		

Name the three classifications of joint


F			
С			
S			

19

Complete the diagram below by adding labels

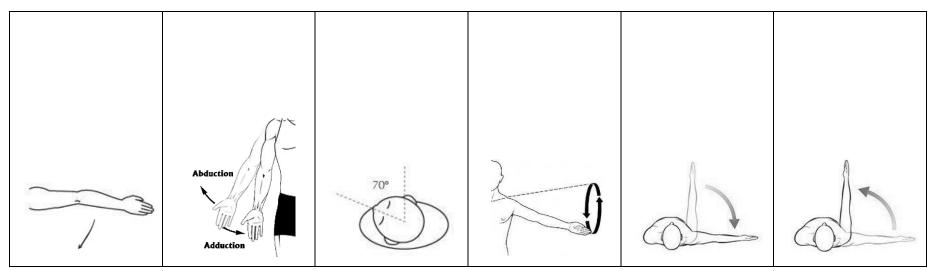
Joint types: Name each joint and give one example in the skeleton

Test S5: Functions of the System, Bones Forming Joints & Movements Available

NAME	SCORE
	/38

GRADE (Circle)				
Under 23	23 to 30 PASS	Over 30 EXCEL		

Functions of the Skeleton

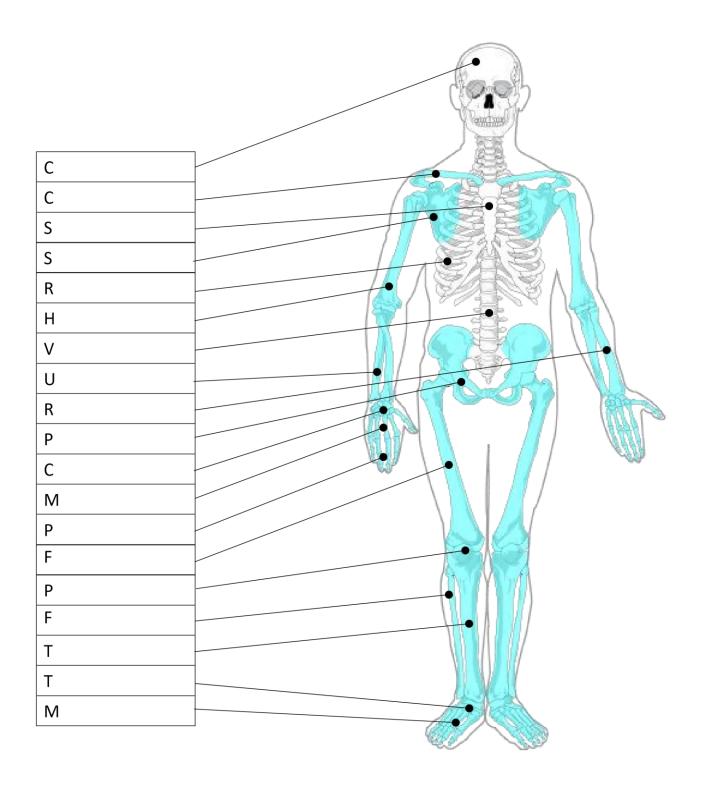

1. S	f	
2. P		
3. A	for m	
4. B	_ c p)
5. S	of m	
6. L		
7. W	b	
8. R	f	across j

Bones forming various joints: Name the bones which make up each joint.

JOINT	TYPE	BONES
Shoulder	Ball & Socket	S, C, H
Elbow	Hinge	H, R, U
Wrist	Hinge	C, R, U
Hip	Ball & Socket	Illium, Pubis, Ischium, & F
Knee	Hinge	F, T, F
Ankle	Hinge	T, F, T

Movements available at synovial joints: Name the movement(s) shown in each diagram.

	2		
	Dorsflexion Plantar flexon	130°	458
2			



(n.b. where a 2 appears, you need to give two answers)

Test S6: Major Bones, Joint Classifications & Types, & Responses to Exercise

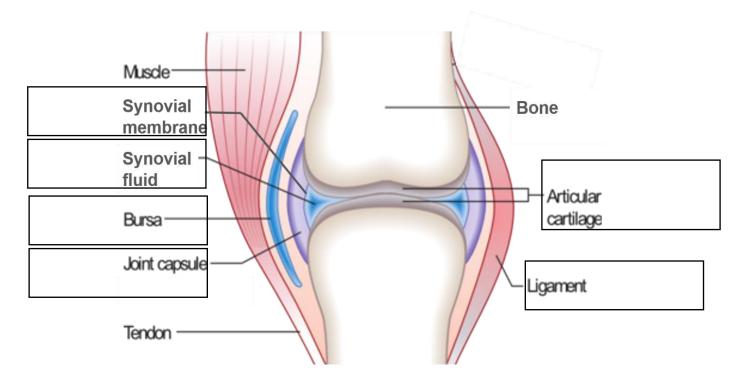
NAME	SCORE	
	/43	

GRADE (Circle)			
Under 26	26 to 34	Over 34	
FAIL	PASS	EXCEL	

Areas of the Skeleton

Identify the two divisions of the skeleton

А	The central part of the skeleton, mainly for protection
А	The limbs, mainly for movement


Spine: how many Cervical Sacral	vertebrae in each section? Thoracic Lumbar Coccygeal vertebrae	
Curvature &	Thoracic—vertebrae	Alignment:
Postural name the two deviations that definitions given	Sacrum Coccyx Lumbar vertebrae	Deviations: postural match the
	is excessive curvature of the thoracic sp	ine
	is excessive curvature of the lumbar spi	ne

Classifications of joints: Name the two missing types of joint

F			
C			

Synovial

Synovial Joints: Complete the diagram below by adding labels

Joint types: The diagram above shows a synovial joint. Name the 6 **types** of synovial joint

1	2	3
4	5	6

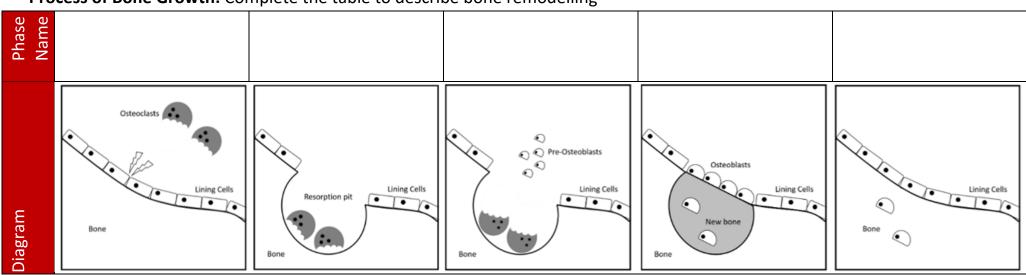
Responses to exercise: Give ONE response that the skeletal system makes to exercise							
	ļ						

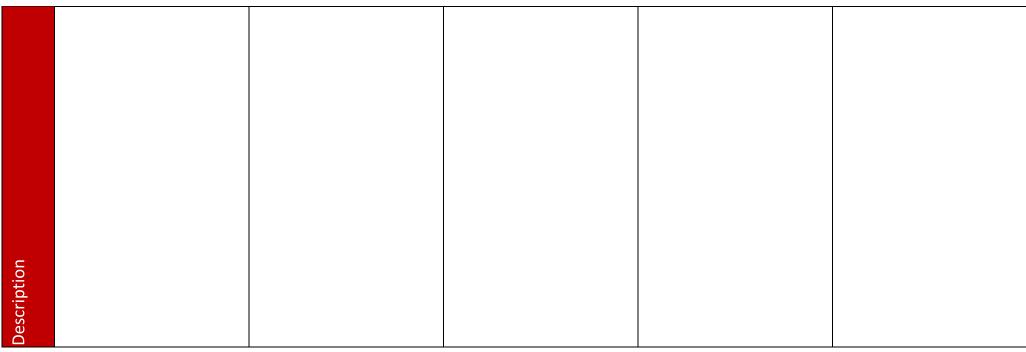
Test S7: Types & Functions of Bones, Bones Forming Joints, Movements Available, Adaptations to Exercise

NAME	SCORE
	/63

GRADE (Circle)			
Under 37	37 to 50	Over 50	
FAIL	PASS	EXCEL	

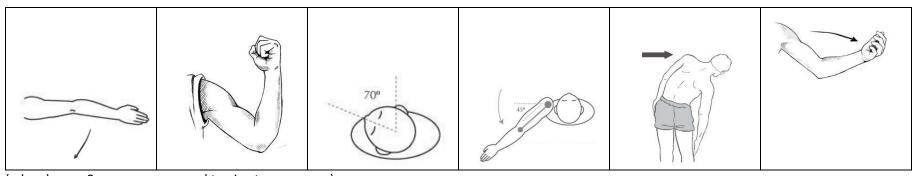
Types and functions of bones: complete this table by naming the five types of bones and providing examples of each


Type of Bone	Function	Example
1. L		
2. S		
3. F		
4. S		
5. I		


Bones forming various joints: Name the bones which make up each joint and say what type of joint it is.

Joint	Туре	Bones			
Shoulder		S	, C	, H	
Elbow		H	, R	, U	
Wrist		C	, R	, U	

Hip	Illium, Pubis,	Ischium, & F		
Knee	F	, T	, F	
Ankle	Τ	, F	, T	


Process of Bone Growth: Complete the table to describe bone remodelling

Movements available at synovial joints: Name the movement(s) shown in each diagram.

2	2		
Abduc	Dorellesion Plantar flexion	130°	

(n.b. where a 2 appears, you need to give two answers)

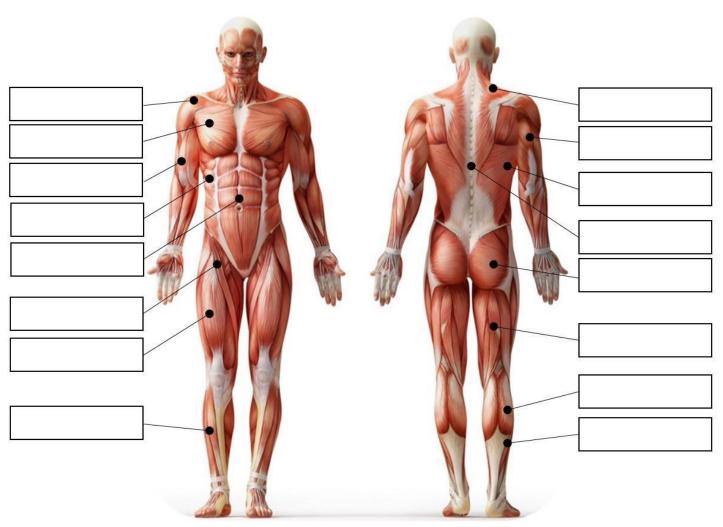
Adaptations to exercise: Give TWO adaptations that the skeletal system makes to exercise	

Test M1: Types of Muscle

NAME	SCORE
	/19

GRADE (Circle)		
Under 12	12 to 16	Over 16
FAIL	PASS	EXCEL

Types of Muscle


In the first column, identify the THREE types of muscle in the human body.

Muscle	Characteristics	Example
	Non-fatiguing, involuntary	Heart (only)
	Fatiguing, voluntary	Biceps, Triceps, Soleus, etc.
	Involuntary, slow contraction	Internal organs, blood vessels

Major Muscles:

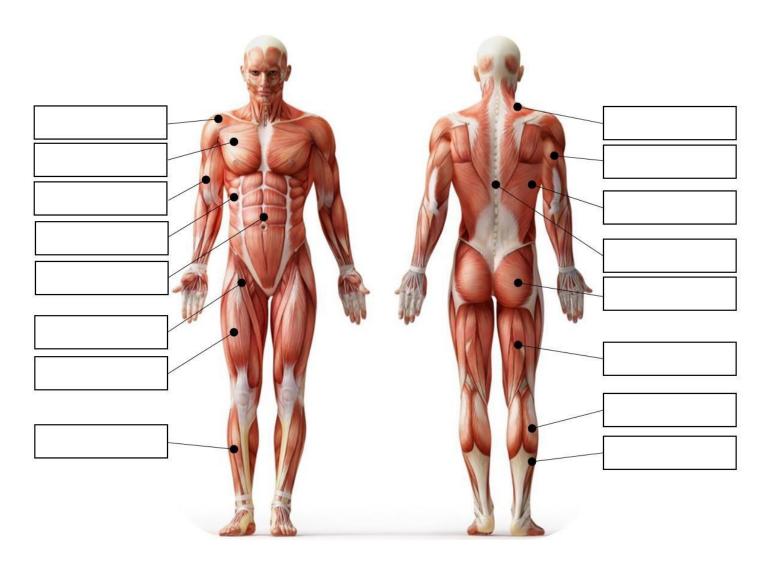
Label the diagram below with the names of the muscles.

•

Test M2 Types of Muscle

NAME	SCORE
	/26

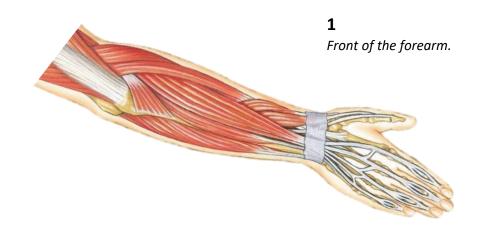
GRADE (Circle)		
Under 16 FAIL	16 to 21 PASS	Over 21 EXCEL


Types of Muscle

Identify the THREE types of muscle in the human body. Add an example.

Muscle Type	Characteristics	Example
	Non-fatiguing, involuntary	
	Fatiguing, voluntary	
	Involuntary, slow contraction	

Major Muscles:


Label the diagram below with the names of the muscles.

•

Muscles of the Wrist

Look at the diagram below. Identify which group of muscles accurately completes the

No.	Muscle Group in t	he wrist	
1	F	/ P	Group
2	E	/s	Group

table

2

Back of the forearm

Test M3 Types of Muscle & Antagonistic Pairs

NAME	SCORE
	/18

GRADE (Circle)		
Under 11	11 to 14	Over 14
FAIL	PASS	EXCEL

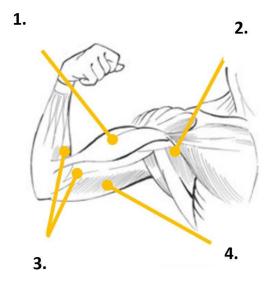
Types of Muscle

Identify the THREE types of muscle in the human body. Add an example.

Muscle Type	Characteristics	Example
	Non-fatiguing, involuntary	
	Fatiguing, voluntary	
	Involuntary, slow contraction	

Antagonistic Pairs

Identify the muscle role that matches the description


Α	muscle that contracts to produce movement (also called prime mover)
A	muscle that relaxes (if contracted would make opposite joint movement)
S	muscle that assists the agonist (in force production)
F	muscle that assists the agonist (by stabilising the muscle's origin)

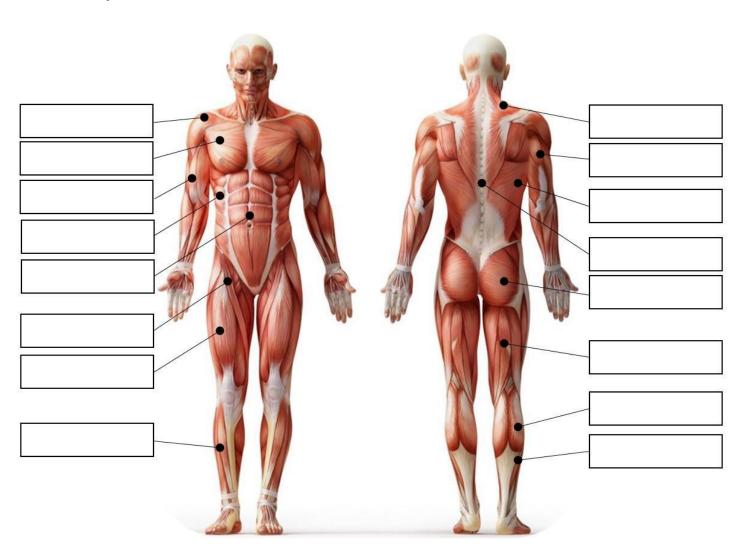
•

Application: Bicep Flexion

Identify the muscles that perform the above four roles in this example.

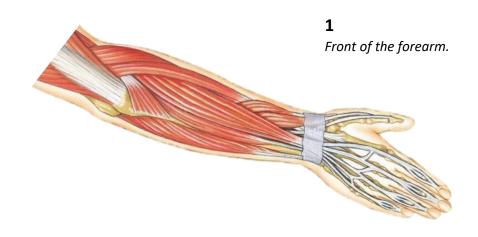
No.	Role	Muscle name(s)
1	A	
2	F	
3	s	
4	Α	

Test M4 Major Muscles & Types of Contraction


NAME	SCORE
	/23

GRADE (Circle)			
Under 14	14 to 18	Over 18	
FAIL	PASS	EXCEL	

Major Muscles:


Label the diagram below with the names of the muscles.

:

Muscles of the Wrist

Look at the diagram below. Identify which group of muscles accurately completes the

No.	Muscle Group in the wrist		
1	F	/ P	Group
2	E	/s	Group

table

2Back of the forearm

Types of Muscle Contraction

Complete the table with the THREE types of muscle contraction

Contraction	As muscle contracts	Used for
-------------	---------------------	----------

•

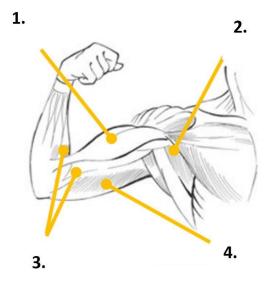
I	no change in muscle length	Static holds (e.g. iron cross)
С	muscle shortens	Movement
E	muscle lengthens	Slowing and braking movements

Test M5 Antagonistic Pairs & Fibre Types

NAME	SCORE
	/29

GRADE (Circle)					
Under 17 FAIL	27 00 20 0 00 20				

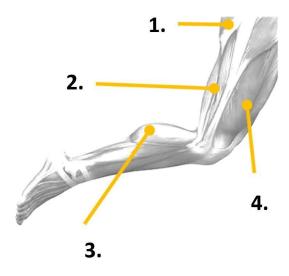
Antagonistic Pairs


Identify the muscle role that matches the description

muscle that contracts to produce movement (also called prime mover)
muscle that relaxes (if contracted would make opposite joint movement)
muscle that assists the agonist (in force production)
muscle that assists the agonist (by stabilising the muscle's origin)

Application 1: Bicep Flexion

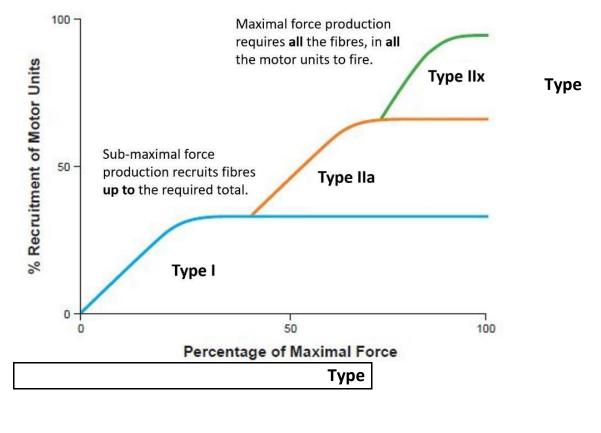
Identify the muscles that perform the above four roles in this example.


No.	Role	Muscle name(s)
1		
2		
3		
4		

Application 2: Hamstring Flexion

Identify the muscles that perform the above four roles in this example.

No.	Role	Muscle name(s)
1		
2		
3		
4		


Fibre Types: Fill the gaps in the table

Fibre Type	Туре І	Type IIa	Type IIx
Twitch Speed	Slow	Fast	Fast
Force	Low		Very High
Fatigue		Medium	Fast
Recovery	Slow	Medium	Fast

:

ATP Source	Oxidative		Glycolytic
Blood Supply	High	High	
Myoglobin	High	High	Low
Colour	Red	Red	
Mitochondria		High	Low
Recruitment	First	Second	Third
Diameter	Small	Medium	Large
Suitable for	Endurance	Games	Speed

Nervous Control: Identify the correct order of fibre type recruitment

T		
Type		

Test M6: Types of Muscle, Types of Contraction & Responses to Exercise

	SCORE	NAME
Un	/21	
	/21	

GRADE (Circle)			
Under 13	13 to 17	Over 17	
FAIL	PASS	EXCEL	

Types of Muscle

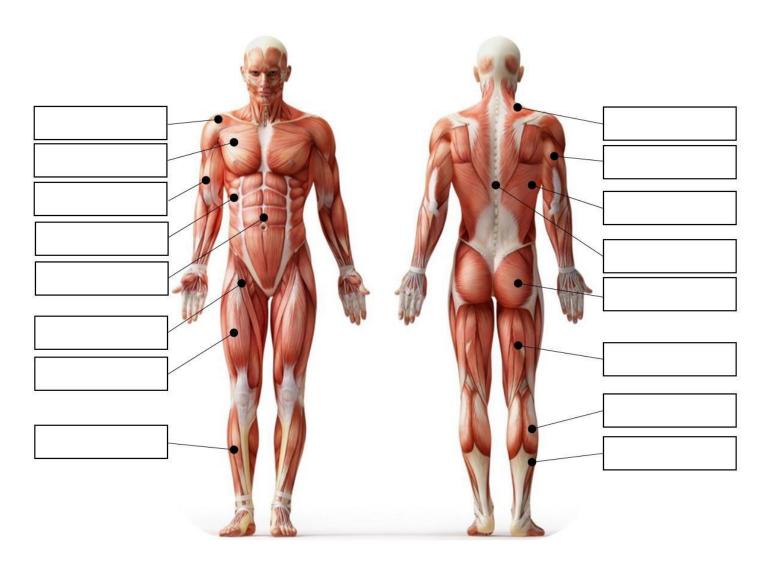
Identify the THREE types of muscle in the human body. Add an example.

Muscle Type	Characteristics	Example
	Non-fatiguing, involuntary	
	Fatiguing, voluntary	
	Involuntary, slow contraction	

Types of Muscle Contraction

Complete the table with the THREE types of muscle contraction

Contraction	As muscle contracts	Used for
	no change in muscle length	
	muscle shortens	
	muscle lengthens	


Responses to exercise: Complete the FIVE muscular system responses to exercise

1	Increased BS
2	Inceased M T
3	Inceased M P
4	L (high intensity exercise)
5	M T (resistance exercise)

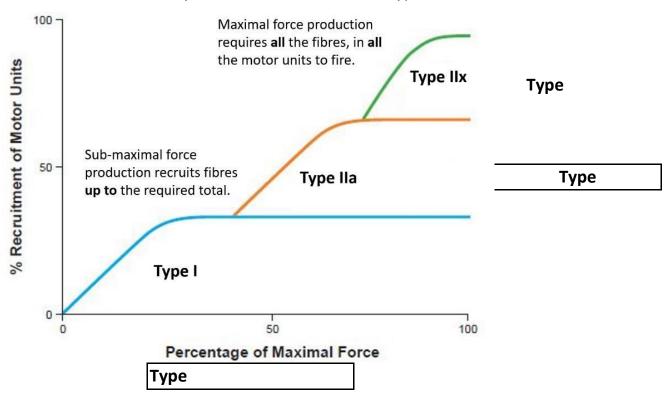
Test M7: Major Muscles, Types of Contraction, Fibre Types, & Nervous Control

NAME	SCORE	
	/37	

GRADE (Circle)			
Under 23	23 to 30 PASS	Over 30 EXCEL	

Types of Muscle Contraction

Complete the table with the THREE types of muscle contraction

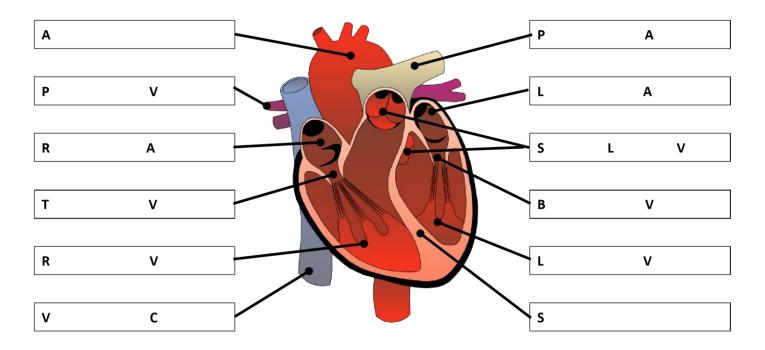

Contraction	As muscle contracts	Used for
	no change in muscle length	
	muscle shortens	
	muscle lengthens	

Fibre Types: Fill the gaps in the table

Fibre Type	Туре І	Type IIa	Туре IIx
Twitch Speed		Fast	Fast

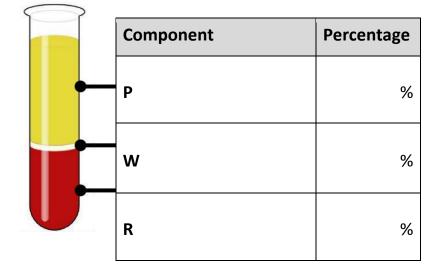
Force	Low		Very High
Fatigue		Medium	Fast
Recovery	Slow	Medium	
ATP Source	Oxidative		Glycolytic
Blood Supply	High	High	
Myoglobin	High	High	Low
Colour	Red	Red	
Mitochondria		High	Low
Recruitment	First		Third
Diameter	Small	Medium	Large
Suitable for			

Nervous Control: Identify the correct order of fibre type recruitment


Test C1: Structure of the System

NAME	SCORE
	/18

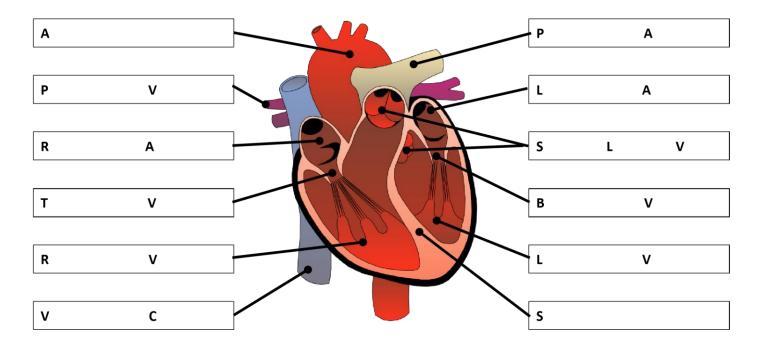
GRADE (Circle)			
Under 11	11 to 14	Over 14	
FAIL	PASS	EXCEL	


Structure of the Heart

Label the diagram

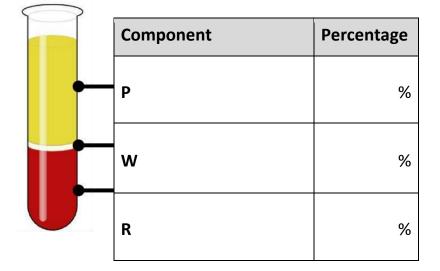
Composition of Blood

Name the component of blood, and say what percentage of the total volume it makes up.


Test C2: Structure of the System

NAME	SCORE
	/23

GRADE (Circle)			
Under 14 FAIL	14 to 18 PASS	Over 18 EXCEL	


Structure of the Heart

Label the diagram

Composition of Blood

Name the component of blood, and say what percentage of the total volume it makes up.

Blood Vessels: Supply the missing words

 ARTERY (& arteriole) Away from the heart Oxygenated blood* T walls High pressure 	 CAPILLARY In the tissue G exchange Very thin walls High P 	VEIN (& venule) 1. Back to the heart 2. D blood* 3. Thin walls 4. Lower pressure 5. V
Smooth muscle Connective tissue	endothelium (one cell thick)	Valve Endothelium Smooth muscle Connective tissue

^{*}except for pulmonary artery/pulmonary vein where this is reversed

Test C3: Structure of the System and Functions of the System

NAME	SCORE	
	/18	

GRADE (Circle)			
Under 11 FAIL	11 to 14 PASS	Over 14 EXCEL	

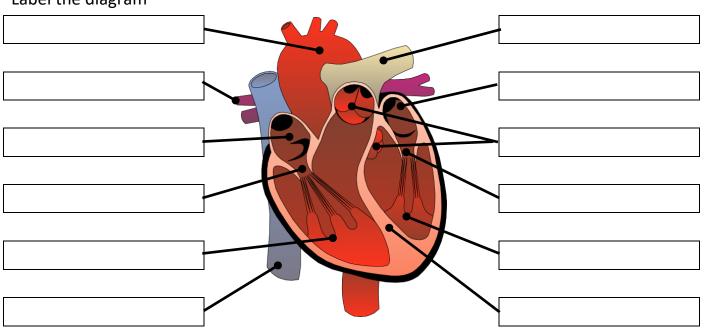
Blood Vessels: Supply the missing words

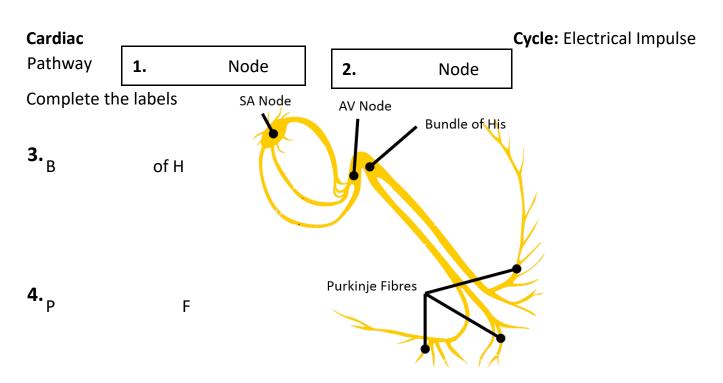
AF	RTERY (& arterio	ole)	CA	PILLARY		VE	IN (& venule)	
	A O	from the heart blood*		In the T G			Back to the H	
	THigh pressure			<i>Very</i> thin wal		4.	Thin walls Lower P V	
	Smooth muscle	Endothelium Connective tissue		endothelium one cell thick)	cell		ValveEndotheliumSmooth muscleConnective tissue	

Functions of the Cardiovascular System: Identify the FIVE functions of the system

1. Delivery of O		and N		
2. R	of W		P	_
3. T				
4. Fight I				
5. Clot B				

^{*}except for pulmonary artery/pulmonary vein where this is reversed


Test C4: Structure of the System and the Cardiac Cycle


NAME	SCORE	
	/20	

GRADE (Circle)			
Under 12	12 to 16	Over 16	
FAIL	PASS	EXCEL	

Structure of the Heart

Label the diagram

Cardiac Cycle

On the diagram below supply the correct headings for each of the stages of the Cardiac Cycle. Choose from:

Iso-volumetric Contraction	Iso-volumetric Relaxation
Atrial Systole	Ventricular Ejection

1.1. Atrial Systole

- Both atria contract
- Blood is pushed into ventricles through AV valves

4. Iso-volumetric Relaxation

- Semi-lunar valves close ('Dub')
- Filling occurs passively as blood returns to heart

2. Iso-volumetric Contraction

- Pressure pushes AV valves closed ('Lub')
- Pressure forces Semi-lunar valves open

3. yentricular Ejection

- Both ventricles contract
- Blood is ejected into Aorta / Pulmonary artery

Test C5: Structure of the System, Functions of the System, & the Cardiac Cycle

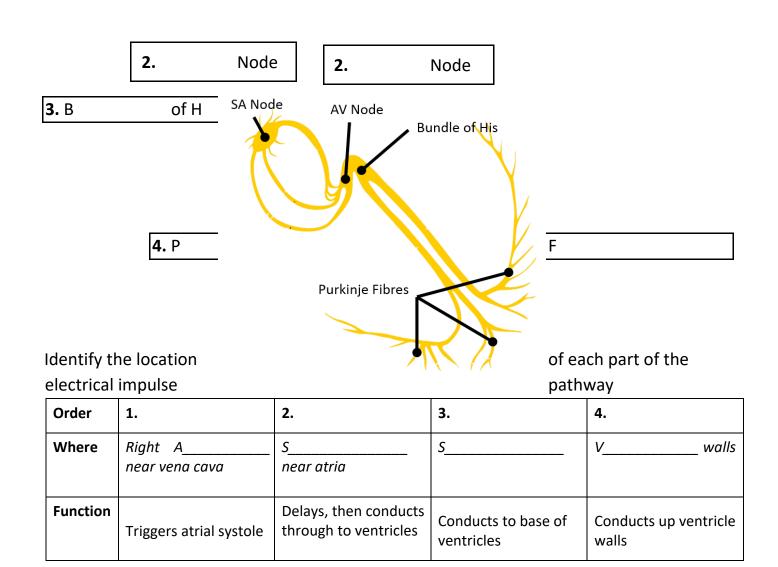
NAME	SCORE	GRADE (Circle)
------	-------	----------------

/35

Under 21	21 to 28	Over 28
FAIL	PASS	EXCEL

Blood Vessels: Supply the missing words

AR	TERY (& arter	iole)	CA	PILLARY	VE	IN (& venule)	
5.	A	_ from the heart	5.	In the T	6.	Back to the H	<u> </u>
6.	0	_ blood*	6.	G exchange	7.	D	_ blood*
7.	T	_ walls	7.	Very thin walls		Thin walls	
8.	High pressure	e	8.	High P	9.	Lower P	
					10	. V	_
	Smooth	Endothelium Connective tissue		endothelium (one cell thick)		Valve Endothelium Smooth muscle Connective tissue	


Functions of the Cardiovascular System: Identify the FIVE functions of the system

1. Delivery of O		_ and N		
2. R	of W		_ P	
3. T	 			
4. Fight I				
5. Clot B				

Cardiac Cycle: Electrical Impulse Pathway

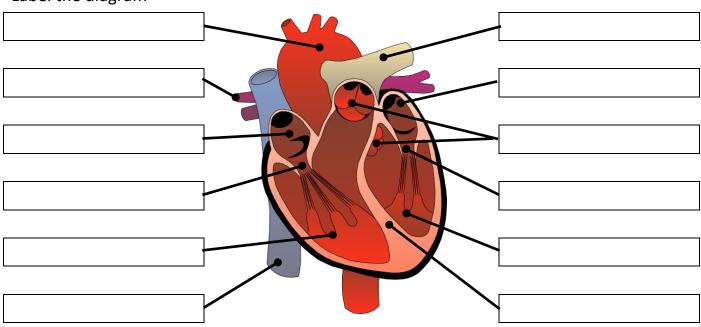
Complete the labels

^{*}except for pulmonary artery/pulmonary vein where this is reversed

Influence of the Autonomic Nervous System on the Cardiac Cycle

Complete the table

SYMPATHETIC NERVOUS SYSTEM	PARASYMPATHETIC NERVOUS SYSTEM
 Secretes A & noradrenaline Increases H R Increases B P Increases contractile force of C muscle Stimulates vasoconstriction/V 	1. Decreases H R


Test C6: Structure of the System, Cardiac Cycle, & Responses to Exercise

NAME	SCORE
	/33

GRADE (Circle)				
Under 20	20 to 26	Over 26		
FAIL	PASS	EXCEL		

Structure of the Heart

Label the diagram

Identify the location of each part of the electrical impulse pathway

Order	1.	2.	3.	4.
Where				
Function	Triggers atrial systole	Delays, then conducts through to ventricles	Conducts to base of ventricles	Conducts up ventricle walls

Influence of the Autonomic Nervous System on the Cardiac Cycle

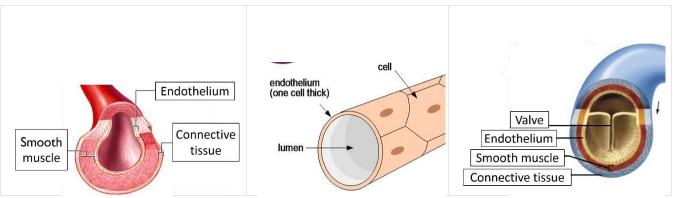
Complete the table

SYMPATHETIC NERVOUS SYSTEM	PARASYMPATHETIC NERVOUS SYSTEM
EXCITES 1. Secretes A & noradrenaline	CALMS
2. Increases H R	1. Decreases H R
3. Increases B P	2. Decreases B P Q (Q)
4. Increases contractile force of C muscle	
5. Stimulates vasoconstriction/V	

Responses to Exercise

Complete the table

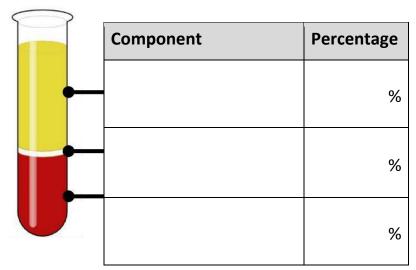
1. Anticipatory I		_ in H	R	_ prior to exercise
2. Increased H	_ R			
3. Increased C	_0			
4. Increased B	_ P			
5. Redirection of B	F_			


Test C7: Structure of the System, Cardiac Cycle, & Adaptations to Exercise

NAME	SCORE
	/27

GRADE (Circle)		
Under 16	16 to 22	Over 22
FAIL	PASS	EXCEL

Blood Vessels: Supply the missing words


ARTERY (& arteriole)	CAPILLARY	VEIN (& venule)
 A from the heart O blood* 	 In the T exchange 	 Back to the H D blood*
3. T walls4. High pressure	3. Very thin walls4. High P	 Thin walls Lower P V

^{*}except for pulmonary artery/pulmonary vein where this is reversed

Composition of Blood

Name the component of blood, and say what percentage of the total volume it makes up.

Cardiac Cycle

On the diagram below supply the correct headings for each of the stages of the Cardiac Cycle. Choose from:

Iso-volumetric Contraction	Iso-volumetric Relaxation
Atrial Systole	Ventricular Ejection

1.1. Atrial Systole

- Both atria contract
- Blood is pushed into ventricles through AV valves

4. Iso-volumetric Relaxation

- Semi-lunar valves close ('Dub')
- Filling occurs passively as blood returns to heart

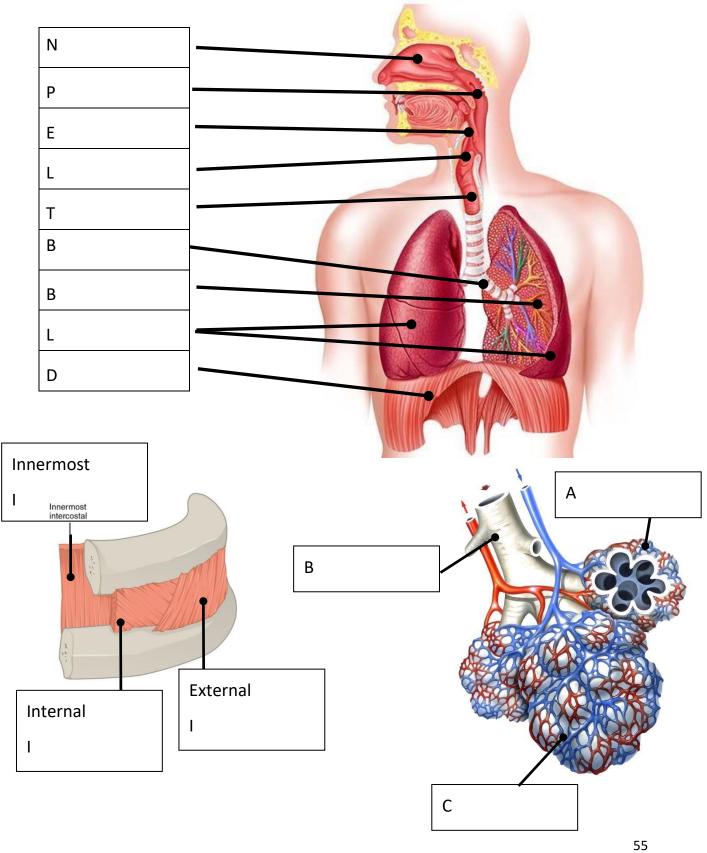
2. Iso-volumetric Contraction

- Pressure pushes AV valves closed ('Lub')
- Pressure forces Semi-lunar valves open

3. <u>Yentricular Ejection</u>

- Both ventricles contract
- Blood is ejected into Aorta / Pulmonary artery

Adaptations to Exercise


Complete the table

1. C H				
2. Increased in R	and E		SV	
3. Decrease in R	н	R		
4. C	_ of S	_ M	and A	-
5. Reduction in R	B	P		
6. Decreased H	R	R	Time	
7. Increase in B	V			

Test R1: Structure of the System

NAME	SCORE
	/15

GRADE (Circle)		
Under 10	10 to 12	Over 12
FAIL	PASS	EXCEL

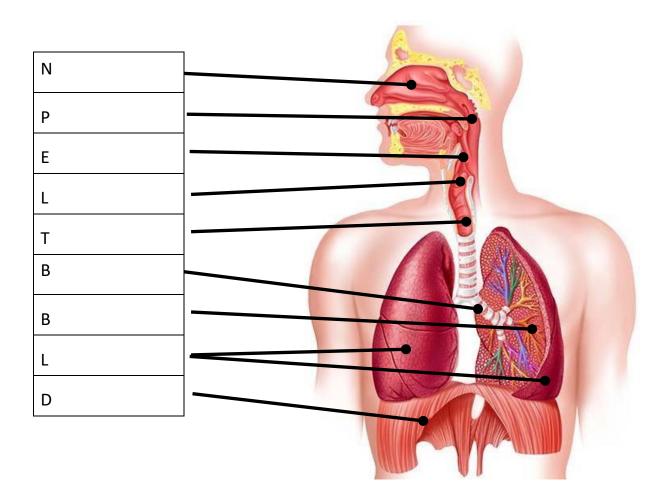
Test R2: Mechanisms of Breathing

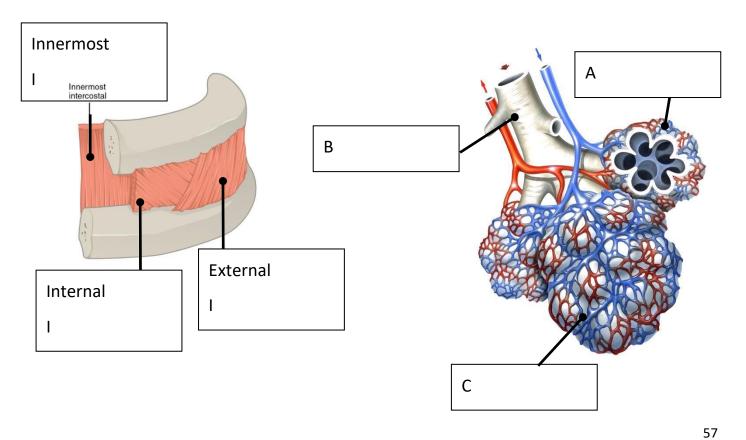
NAME	SCORE
	/12

GRADE (Circle)		
Under 7	7 to 10 PASS	Over 10 EXCEL

Inspiration and Expiration: complete this table by saying what happens to each of these when breathing in / out

	Inspiration	Expiration
Diaphragm		
External Intercostals		
Chest cavity		
Thoracic Pressure		
Air flows		

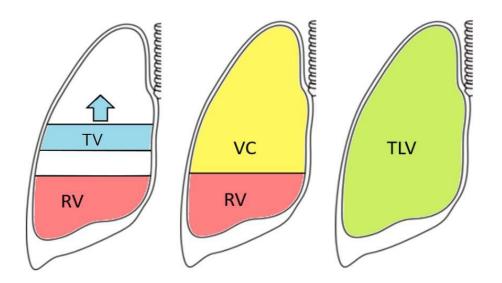

^{*}During exercise exhalation becomes an **a**_____ process.


The internal intercostal muscles contract to pull the rib cage **d_____.**

Test R3: Structure of the System & Lung Volumes

NAME	SCORE
	/20

GRADE (Circle)		
Under 12	12 to 16	Over 16
FAIL	PASS	EXCEL



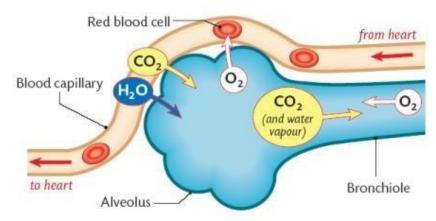
Lung Volumes: complete this table by giving the correct name for each of these lung volumes . The diagram may help.

Lung Volume	Definition
	Total air inhaled/exhaled in one breath under resting conditions*
	Maximum amount of air that can be expired after a maximum inhalation
	Amount of air remaining in the lungs after a forced exhalation
	Maximum amount of air in the lungs after a maximum inspiration
	Total amount of air inhaled / exhaled per minute

Test R4: Mechanisms of Breathing & Gaseous Exchange

NAME	SCORE	
	/22	

GRADE (Circle)		
Under 13	13 to 17 PASS	Over 17 EXCEL

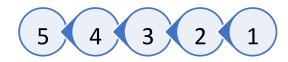

Inspiration and Expiration: complete this table by saying what happens to each of these when breathing in / out

	Inspiration	Expiration
Diaphragm		
External Intercostals		
Chest cavity		
Thoracic Pressure		
Air flows		

^{*}During exercise exhalation becomes an **a**_____ process.

The internal intercostal muscles contract to pull the rib cage **d______.**

Gaseous Exchange: complete the statements below. This diagram may help.



Inspiration

- 1. Inspired oxygen arrives at the a_____
- 2. O_____ dissolves in the moist alveolar membrane
- 3. Oxygen diffuses through the m_____
- 4. Each alveolus is surrounded by c_____
- 5. Oxygen is taken up by the r_____ blood cells

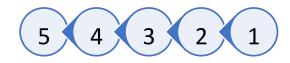
Expiration

- 1. CO₂ is a product of r_____
- 2. CO₂ arrives in the b_____ from the body
- 3. CO₂ dissolves at the moist m_____
- 4. CO₂ d_____ across the thin alveolar membrane
- 5. CO₂ is breathed out, along with water v_____

Test R5: Gaseous Exchange & Control of Breathing

NAME	SCORE
	/19

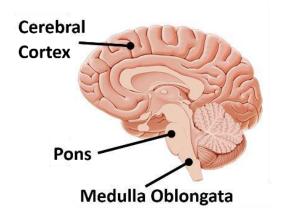
GRADE (Circle)		
Under 11	11 to 15	Over 15
FAIL	PASS	EXCEL


Gaseous Exchange: complete the statements below.

Inspiration

- 6. Inspired oxygen arrives at the a_____
- 7. O_____ dissolves in the moist alveolar membrane
- 8. Oxygen diffuses through the m_____
- 9. Each alveolus is surrounded by c_____
- 10.Oxygen is taken up by the r_____ blood cells

Expiration


- 6. CO₂ is a product of r_____
- 7. CO₂ arrives in the b_____ from the body
- 8. CO₂ dissolves at the moist m
- 9. $CO_2 d$ across the thin alveolar membrane
- 10.CO₂ is breathed out, along with water v_____

Control of Breathing

Breathing is controlled in two main ways, Neural and Chemical control.

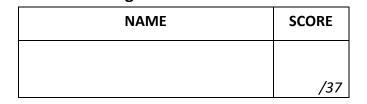
1. Neural Control

Which parts of the brain exerts Involuntary Control over breathing?
1.
2.
Which part of the brain exerts Voluntary control over breathing?
1.

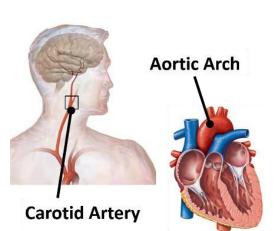
2. Chemical Control: for each of the following write the word UP or DOWN

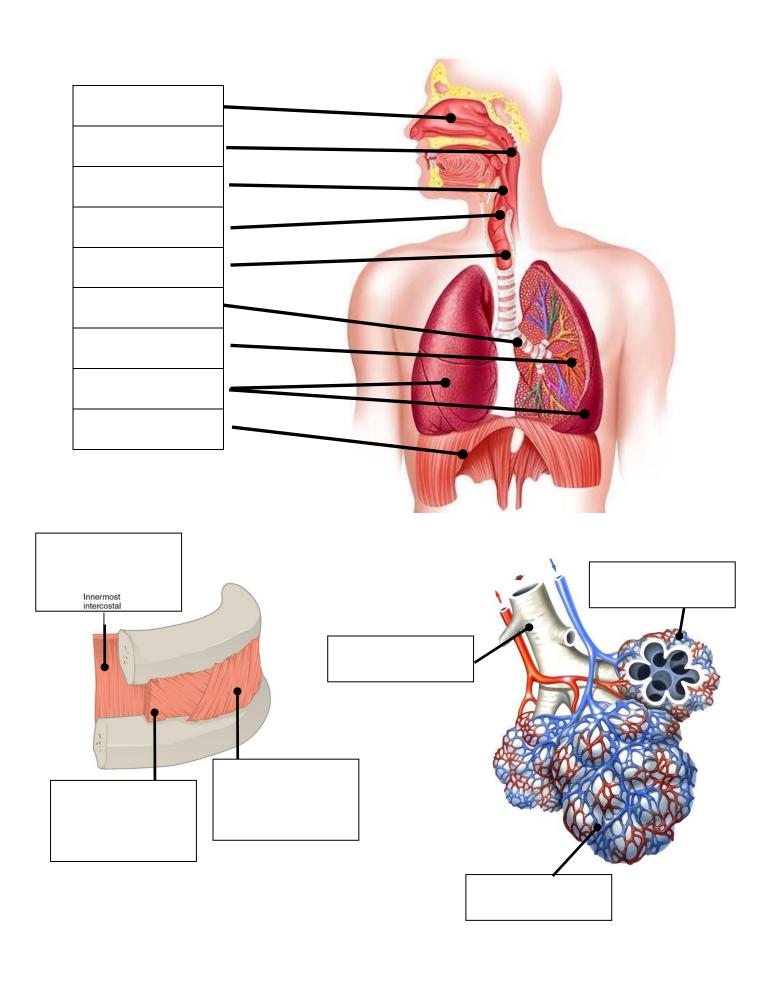
Chemoreceptors detect change in blood CO2 concentration.

Do these go UP or DOWN during exercise?


- CO2 concentration Breathing rate _____
- CO2 removal

Chemoreceptors detect change in pH (acidity) Do


these go UP or DOWN during exercise?


- **Blood lactate** Breathing rate

GRADE (Circle)		
Under 22	22 to 30	Over 30
FAIL	PASS	EXCEL

Lung Volumes: complete this table by giving the correct name and definition for each of the lung volumes.

Lung Volume	Definition	
	Total air inhaled/exhaled in one breath under	*
	Maximum amount of air that can be expired after	-
	Amount of air remaining in the lungs after	-
	Maximum amount of air in the lungs after	
	Total amount of air inhaled / exhaled per	_

Mechanisms of Breathing: complete this table by saying what happens to each of these when breathing in / out

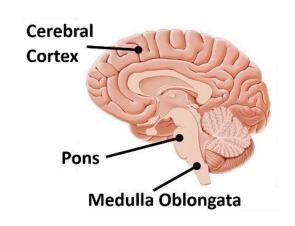
	Inspiration	Expiration
Diaphragm		
External Intercostals		
Chest cavity		
Thoracic Pressure		
Air flows		

64

*During exercise exhalation becomes an **a**______ process.

External Intercostals

Chest cavity


Thoracic Pressure		
Air flows		
*During exercise exhalation becomes an a process. The internal intercostal muscles contract to pull the rib cage d Adaptations to exercise: Give TWO adaptations that the respiratory system makes to exercise		

Control of Breathing

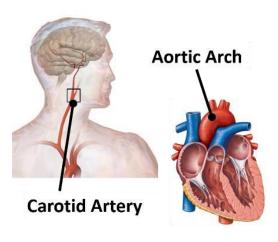
Breathing is controlled in two main ways, Neural and Chemical control.

1. Neural Control

Which parts of the brain exerts Involuntary Control over breathing?
1.
2.
Which part of the brain exerts voluntary control over breathing?
1.

2. Chemical Control: for each of the following write the word UP or DOWN

Chemoreceptors detect change in blood CO2 concentration.


Do these go UP or DOWN during exercise?

•	CO2 concentration	 •
	Breathing rate	
•	CO2 removal	

Chemoreceptors detect change in pH (acidity) Do

these go UP or DOWN during exercise?

•	Blood lactate	 •
	Breathing rate	 •
	Lactate breakdown	

Test:

Test E1: The Role of ATP

NAME	SCORE
	/6

GRADE (Circle)		
Under 4 FAIL	4 PASS	Over 4 EXCEL

The role of ATP in exercise

1. ATP Availability	2. ATP Structure	3. ATP Breakdown	4. ATP Resynthesis
	A P P P	A P P	A - P - P - P
ATP is stored in the M	ATP consists of 3 Pattached to an Adenine group.	The final P is broken off & E is	Resynthesis of ATP from ADP occurs via T pathways.
It is readily available to be broken		released.	. ,
No other compound can be used by the body.		Energy is now available for muscular C	The pathway used will be determined by intensity/duration, fuel source & availability of oxygen.
		ADP is left.	

E2 ATP and the ATP-PC System

NAME	SCORE
	/13

GRADE (Circle)		
Under 8	8 to 10 PASS	Over 10 EXCEL

The role of ATP in exercise

5. ATP Availability	6. ATP Structure	7. ATP Breakdown	8. ATP Resynthesis
	A P P P	A P P	A - P - P - P
ATP is stored in the M	ATP consists of 3 Pattached to an Adenine group.	The final P is broken off & energy is released.	Resynthesis of ATP from ADP occurs via T pathways.
It is readily available to be broken			
down.		Energy is now available for muscular	The pathway used will be
No other compound can be used by the body.		C ADP is left.	determined by intensity/duration, fuel source & availability of oxygen.

Test :

The ATP-PC (Alactic) Energy System: Supply the missing words below

Type: A_____

Fuel Source: C______ Phosphate (CP)

Duration: Approx. _____ seconds

Recovery Time: About _____ mins

Used in: Sports requiring explosive P_____

1	A - P - P P	ATP requires R
2	C-P	Creatine Phosphate is present in the muscle cell
3	CP	Creatine Phosphate is broken down to provide the E required.
4	A P P P	1 PC molecule produces 1 new ATP M

E3 The Lactate System

NAME	SCORE
	/17

GRADE (Circle)		
Under 10	10 to 14	Over 14
FAIL	PASS	EXCEL

The role of ATP in exercise

1. ATP Availability	2. ATP Structure	3. ATP Breakdown	4. ATP Resynthesis
CUB.	A P P P	A P P	A P P P
ATP is stored in the M	ATP consists of 3 Pattached to an Adenine group.	The final P is broken off & energy is released.	Resynthesis of ATP from ADP occurs via T pathways.
It is readily available to be broken			
down.		Energy is now available for muscular	The pathway used will be
No other compound can be used by		C	determined by intensity/duration, fuel source & availability of oxygen.
the body.		ADP is left.	

Test:

The Lactate Energy System:

Type: A_____ Glycolysis

Fuel Source: G_____

Duration: Approx. ____ secs to ____ mins

Recovery Time: _____ hours

Used in: Stop/start games, field & court sports

1	A - P - P	ATP requires R
2	G	Glycogen is present in the muscle cell and in the L Glucose is present in the B
3		Glucose/Glycogen is broken down to provide the energy required. E speed up the process.
4	Pyruvate Lactate	P is also produced. Since no oxygen is available this is converted into L

Supply the missing words below

E4 ATP-PC and Lactate Energy Systems

NAME	SCORE
	/20

GRADE (Circle)		
Under 12	12 to 16	Over 16
FAIL	PASS	EXCEL

The ATP-PC (Alactic) Energy System: Supply the missing words below

Type: A_____

Fuel Source: C______ Phosphate (CP)

Duration: Approx. _____ seconds

Recovery Time: About _____ mins

Used in: Sports requiring explosive P_____

1	A P P	ATP requires R
2	C P	Creatine Phosphate is present in the muscle cell

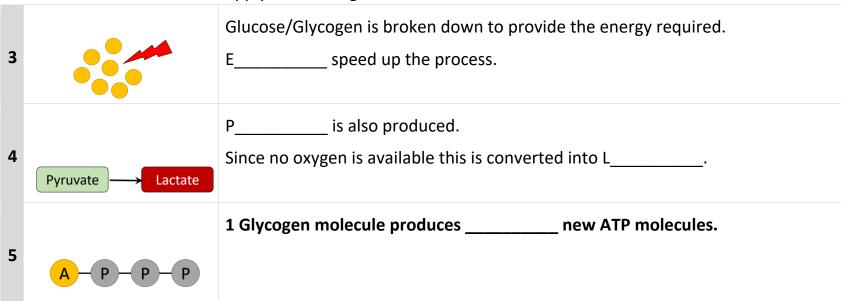
Test:

3	CP	Creatine Phosphate is broken down to provide the E required.
4	A - P - P - P	1 PC molecule produces 1 new ATP M

The Lactate Energy System:

Type: A _____ Glycolysis

Fuel Source: G_____


Duration: Approx. _____ secs to _____ mins

Recovery Time: _____ hours

Used in: Stop/start games, field & court sports

1	A - P - P P	ATP requires R
2	G	Glycogen is present in the muscle cell and in the L Glucose is present in the B

Supply the missing words below

:

Test E5 Lactate and Aerobic Energy Systems

NAME	SCORE
	/15

GRADE (Circle)		
Under 9 FAIL	9 to 12 PASS	Over 12 EXCEL

The role of ATP in exercise

1. ATP Availability	2. ATP Structure	3. ATP Breakdown	4. ATP Resynthesis
CUB .	A P P P	A P P	A P P P
ATP is stored in the M	ATP consists of 3 Pattached to an Adenine group.	The final P is broken off & energy is released.	Resynthesis of ATP from ADP occurs via T pathways.
It is readily available to be broken			
down.		Energy is now available for muscular	The pathway used will be
No other compound can be used by the body.		C ADP is left.	determined by intensity/duration, fuel source & availability of oxygen.
		ADF IS ICIL.	

Supply the missing words below

The Aerobic Energy System:

Type: Aerobic Glycolysis (& L_____)

Fuel Source: G______ and F_____

Duration: Longer than _____ mins

Recovery Time: 24-48 hours

Used in: Long distance & endurance events

1	A - P - P P	ATP requires R
2	G	Glycogen is present in the muscle cell and in the L Glucose is present in the B
3		Glucose/Glycogen is broken down to provide the energy required. Enzymes speed up the process.
4	Pyruvate Acetyl CoA	Pyruvate is also produced. Oxygen is available so pyruvate is broken down into Acetyl CoA
5	Fatty Acetyl CoA	Or, Acetyl CoA can be created from fats by a process called BO
6	Acetyl CoA Krebs Cycle ETC	Acetyl CoA passes through the K Cycle and the Electron Transport Chain (ETC) By products include CO2, O2 and H2O. More energy is produced here.
7	A - P - P - P	1 Glycogen molecule produces about 34 new ATP molecules.

:

Test E6 Lactate and Aerobic Energy Systems

NA	ME	SCORE
		/31

GRADE (Circle)			
Under 19	19 to 25	Over 25	
FAIL	PASS	EXCEL	

The role of ATP in exercise

1. ATP Availability	2. ATP Structure	3. ATP Breakdown	4. ATP Resynthesis
CUB .	A P P P	A P P	A P P P
ATP is stored in the M	ATP consists of 3 Pattached to an Adenine group.	The final P is broken off & energy is released.	Resynthesis of ATP from ADP occurs via T pathways.
It is readily available to be broken			
down.		Energy is now available for muscular	The pathway used will be
No other compound can be used by the body.		C ADP is left.	determined by intensity/duration, fuel source & availability of oxygen.
		ADP IS IEIL.	

The Lactate Energy System: Supply the missing words below

Type: A _____ Glycolysis

Fuel Source: G_____

Duration: Approx. _____ secs to _____ mins

Recovery Time: _____ hours

Used in: Stop/start games, field & court sports

1	A - P - P P	ATP requires R
2	G	Glycogen is present in the muscle cell and in the L Glucose is present in the B
3		Glucose/Glycogen is broken down to provide the energy required. E speed up the process.
4	Pyruvate ——— Lactate	P is also produced. Since no oxygen is available this is converted into L

		1 Glycogen molecule produces new ATP molecules.
5	A P P P	

The Aerobic Energy System: Supply the missing words below

Type: Aerobic Glycolysis (& L_____)

Fuel Source: G______ and F_____

Duration: Longer than _____ mins

Recovery Time: _____ hours

Used in: Long distance & endurance events

1	A - P - P P	ATP requires R
2	G	Glycogen is present in the muscle cell and in the L Glucose is present in the B
3		Glucose/Glycogen is broken down to provide the energy required. Enzymes speed up the process.
4	Pyruvate Acetyl CoA	Pyruvate is also produced. Oxygen is available so pyruvate is broken down into Acetyl CoA
5	Fatty Acetyl CoA	Or, Acetyl CoA can be created from fats by a process called BO

	Acetyl CoA (Krebs Cycle) ETC	Acetyl CoA passes through the K Cycle and the Electron Transport Chain (ETC)		
6		By products include, and More energy is produced here.		
7	A P P P	1 Glycogen molecule produces about 34 new ATP molecules.		

Test E7: Lactate System, Aerobic System and Adaptations to exercise (of all three systems)

NAME	SCORE
	/41

GRADE (Circle)			
Under 25	25 to 33 PASS	Over 33 EXCEL	

The role of ATP in exercise

5. ATP Availability 6. ATP Structure		7. ATP Breakdown	8. ATP Resynthesis	
	A P P P	A P P	A P P P	

ATP is stored in the M	ATP consists of 3 Pattached to an Adenine group.	The final P is broken off & energy is released.	Resynthesis of ATP from ADP occurs via T pathways.
It is readily available to be broken			
down. No other compound can be used by		Energy is now available for muscular C	The pathway used will be determined by intensity/duration, fuel source & availability of oxygen.
the body.		ADP is left.	

The Lactate Energy System: Supply the missing words below

Type: A_____ Glycolysis

Fuel Source: G_____

Duration: Approx. _____ secs to _____ mins

Recovery Time: _____ hours

Used in: Stop/start games, field & court sports

2	G	Glycogen is present in the muscle cell and in the L Glucose is present in the B
3		Glucose/Glycogen is broken down to provide the energy required. E speed up the process.
4	Pyruvate Lactate	P is also produced. Since no oxygen is available this is converted into L
5	A P P P	1 Glycogen molecule produces new ATP molecules.

The Aerobic Energy System: Supply the missing words below

Type: Aerobic Glycolysis (& L_____)

Fuel Source: G______ and F_____

Duration: Longer than _____ mins

Recovery Time: _____ hours

Used in: _____

1	A - P - P P	ATP requires R
2	~	G is present in the muscle cell and in the liver.
	G	G is present in the bloodstream
3		Glucose/Glycogen is broken down to provide the energy required.
3		E speed up the process.
		P is also produced.
4	Pyruvate Acetyl CoA	O is available so P is broken down into Acetyl CoA
5	Fatty Acetyl CoA	Or, Acetyl CoA can be created from fats by a process called B O
		Acetyl CoA passes through the K Cycle and the E Transport Chain
6	Acetyl CoA (Krebs Cycle) ETC	By products include CO2, O2 and H2O. More energy is produced here.
7	A P P P	1 G molecule produces about new ATP molecules.

Adaptations to Exercise (of the ATP-PC & Lactate systems)

Give one adaptations to exercise of the ATP-PC system

1.

Give one	adaptations to exerci	se of the Lactate	system		
1.					
Give THR	REE adaptations to exe	rcise of the Lacta	te system		
1.					
2.					
3.					

